
## Jianning Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8911082/publications.pdf Version: 2024-02-01



LIANNING WANG

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Solution rheology of cellulose in 1-butyl-3-methyl imidazolium chloride. Journal of Rheology, 2011, 55, 485-494.                                                                                 | 1.3 | 78        |
| 2  | Solubility of neutral and charged polymers in ionic liquids studied by laser light scattering. Polymer, 2011, 52, 481-488.                                                                       | 1.8 | 59        |
| 3  | Rheological behavior of cellulose/silk fibroin blend solutions with ionic liquid as solvent. Cellulose, 2014, 21, 675-684.                                                                       | 2.4 | 37        |
| 4  | Morphology and properties of cellulose/silk fibroin blend fiber prepared with<br>1-butyl-3-methylimidazolium chloride as solvent. Cellulose, 2015, 22, 625-635.                                  | 2.4 | 30        |
| 5  | Fabrication and Properties of Carbon Nanotube and Poly(vinyl alcohol) Composites. Journal of<br>Macromolecular Science - Physics, 2006, 45, 659-664.                                             | 0.4 | 25        |
| 6  | Linear viscoelasticity of poly(acrylonitrile-co-itaconic acid)/1-butyl-3-methylimidazolium chloride extended from dilute to concentrated solutions. European Polymer Journal, 2012, 48, 597-603. | 2.6 | 21        |
| 7  | Morphology and structure changes of aromatic copolysulfonamide fibers heatâ€drawn at various<br>temperatures. Polymer International, 2014, 63, 2084-2090.                                        | 1.6 | 21        |
| 8  | Study on the temperature-induced sol–gel transition of cellulose/silk fibroin blends in<br>1-butyl-3-methylimidazolium chloride via rheological behavior. Cellulose, 2014, 21, 3737-3743.        | 2.4 | 17        |
| 9  | Preparation and properties of polyacrylonitrile fibers with guanidine groups. Fibers and Polymers, 2015, 16, 1611-1617.                                                                          | 1.1 | 17        |
| 10 | Processing Properties and Improvement of Pale, Soft, and Exudative-Like Chicken Meat: a Review. Food and Bioprocess Technology, 2020, 13, 1280-1291.                                             | 2.6 | 15        |
| 11 | Cellulose/aromatic polysulfonamide blended fibers with improved properties. Cellulose, 2017, 24, 3377-3386.                                                                                      | 2.4 | 13        |
| 12 | The viscoelastic behavior of concentrated polyacrylonitrile/1-butyl-3-methylimidazolium chloride from solution to gel. Polymer Engineering and Science, 2014, 54, 598-606.                       | 1.5 | 11        |
| 13 | Structure and property development of aromatic copolysulfonamide fibers during wet spinning process. Journal of Applied Polymer Science, 2015, 132, .                                            | 1.3 | 10        |
| 14 | Dynamic modeling of dry-jet wet spinning of cellulose/[BMIM]Cl solution: complete deformation in the air-gap region. Cellulose, 2015, 22, 1963-1976.                                             | 2.4 | 10        |
| 15 | Fibers from Multi-walled Carbon Nanotube/Polyacrylonitrile Composites. Polymer Journal, 2005, 37,<br>376-379.                                                                                    | 1.3 | 9         |
| 16 | The combined effect of heat-draw ratios and residence time on the morphology and property of aromatic copolysulfonamide fibers. RSC Advances, 2015, 5, 27163-27167.                              | 1.7 | 9         |
| 17 | Copolymer Structure and Properties of Aromatic Polysulfonamides. Journal of Macromolecular<br>Science - Physics, 2012, 51, 1199-1207.                                                            | 0.4 | 8         |
| 18 | Determination of Poly(4,4′â€diphenylsulfonyl terephthalamide) Crystalline Structure Via WAXD and<br>Molecular Simulations. Macromolecular Chemistry and Physics, 2013, 214, 2432-2438.           | 1.1 | 7         |

JIANNING WANG

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Physicochemical Characterization of Two Polysulfon-Amides in Dilute Solution. Macromolecular Symposia, 2010, 298, 116-123.                                                                                                  | 0.4 | 6         |
| 20 | Online multi-object tracking using KCF-based single-object tracker with occlusion analysis.<br>Multimedia Systems, 2020, 26, 655-669.                                                                                       | 3.0 | 6         |
| 21 | MIGRATION OF ANTIMICROBIAL AGENTS IN THE POLYPROPYLENE FIBER. Polymer-Plastics Technology and Engineering, 2000, 39, 223-232.                                                                                               | 1.9 | 5         |
| 22 | Study on spinnability of polyacrylonitrile solution based on dynamics simulation of dryâ€ <del>j</del> et wet<br>spinning. Journal of Applied Polymer Science, 2018, 135, 46377.                                            | 1.3 | 5         |
| 23 | Effect of the draw ratio in dry jet-wet spinning on aromatic copolysulfonamide fibers. Nuclear<br>Science and Techniques/Hewuli, 2020, 31, 1.                                                                               | 1.3 | 5         |
| 24 | Scale-aware attention-based multi-resolution representation for multi-person pose estimation.<br>Multimedia Systems, 2022, 28, 57-67.                                                                                       | 3.0 | 5         |
| 25 | Viscoelastic behavior and solâ€gel transition of cellulose/silk fibroin/1â€butylâ€3â€methylimidazolium<br>chloride extended from dilute to concentrated solutions. Polymer Engineering and Science, 2018, 58,<br>1931-1936. | 1.5 | 3         |
| 26 | Toward Making Poly(ethylene terephthalate) Degradable in Aqueous Environment. Macromolecular<br>Materials and Engineering, 0, , 2100832.                                                                                    | 1.7 | 2         |
| 27 | Rheology of Cellulose/Alginic Acid Blends with 1â€Allylâ€3â€Methylimidazolium Chloride as Solvent.<br>Polymer Engineering and Science, 2020, 60, 243-249.                                                                   | 1.5 | 1         |
| 28 | Establishment of the Melt Spinning Dynamics Model for Polymeric Nanocomposites. Journal of<br>Macromolecular Science - Physics, 2006, 45, 601-614.                                                                          | 0.4 | 0         |
| 29 | The enhanced dyeability of aromatic polysulfonamide fibers using γâ€ray irradiationâ€induced graft<br>polymerization. Polymer Engineering and Science, 2018, 59, 592.                                                       | 1.5 | 0         |