
Sevil Korkmaz-Icöz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8910895/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Critical role of RAGE and HMGB1 in inflammatory heart disease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E155-64.	7.1	130
2	Acute canagliflozin treatment protects against in vivo myocardial ischemia–reperfusion injury in non-diabetic male rats and enhances endothelium-dependent vasorelaxation. Journal of Translational Medicine, 2019, 17, 127.	4.4	88
3	The soluble guanylate cyclase activator cinaciguat prevents cardiac dysfunction in a rat model of type-1 diabetes mellitus. Cardiovascular Diabetology, 2015, 14, 145.	6.8	46
4	Oral treatment with a zinc complex of acetylsalicylic acid prevents diabetic cardiomyopathy in a rat model of type-2 diabetes: activation of the Akt pathway. Cardiovascular Diabetology, 2016, 15, 75.	6.8	32
5	Hypothermic perfusion of donor heart with a preservation solution supplemented by mesenchymal stem cells. Journal of Heart and Lung Transplantation, 2019, 38, 315-326.	0.6	32
6	Targeting phosphodiesterase 5 as a therapeutic option against myocardial ischaemia/reperfusion injury and for treating heart failure. British Journal of Pharmacology, 2018, 175, 223-231.	5.4	27
7	Olaparib protects cardiomyocytes against oxidative stress and improves graft contractility during the early phase after heart transplantation in rats. British Journal of Pharmacology, 2018, 175, 246-261.	5.4	25
	Genetic Ablation of TASK-1 (Tandem of P Domains in a Weak Inward Rectifying K ⁺) Tj ETQq0 0 0	rgBT /Overl	ock 10 Tf 50
8	Channels Suppresses Atrial Fibrillation and Prevents Electrical Remodeling. Circulation: Arrhythmia and Electrophysiology, 2019, 12, e007465.	4.8	25
9	Administration of zinc complex of acetylsalicylic acid after the onset of myocardial injury protects the heart by upregulation of antioxidant enzymes. Journal of Physiological Sciences, 2016, 66, 113-125.	2.1	24
10	Left ventricular pressure-volume measurements and myocardial gene expression profile in type 2 diabetic Goto-Kakizaki rats. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H958-H971.	3.2	23
11	Mild Type 2 Diabetes Mellitus Reduces the Susceptibility of the Heart to Ischemia/Reperfusion Injury: Identification of Underlying Gene Expression Changes. Journal of Diabetes Research, 2015, 2015, 1-16.	2.3	22
12	Effects of soluble guanylate cyclase activation on heart transplantation in a rat model. Journal of Heart and Lung Transplantation, 2015, 34, 1346-1353.	0.6	21
13	Myocardial reverse remodeling after pressure unloading is associated with maintained cardiac mechanoenergetics in a rat model of left ventricular hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H592-H603.	3.2	19
14	Dimethyloxalylglycine treatment of brain-dead donor rats improves both donor and graft left ventricular function after heart transplantation. Journal of Heart and Lung Transplantation, 2016, 35, 99-107.	0.6	19
15	Pressure-volume analysis reveals characteristic sex-related differences in cardiac function in a rat model of aortic banding-induced myocardial hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H502-H511.	3.2	18
16	Analysis of urinary cathepsin C for diagnosing Papillon–LefÃ [∵] vre syndrome. FEBS Journal, 2016, 283, 498-509.	4.7	14
17	Reverse electrical remodeling following pressure unloading in a rat model of hypertension-induced left ventricular myocardial hypertrophy. Hypertension Research, 2017, 40, 637-645.	2.7	14
18	Mesenchymal stem cell-derived conditioned medium protects vascular grafts of brain-dead rats against in vitro ischemia/reperfusion injury. Stem Cell Research and Therapy, 2021, 12, 144.	5.5	14

#	Article	IF	CITATIONS
19	Monitoring of perfusion quality and prediction of donor heart function during ex-vivo machine perfusion by myocardial microcirculation versus surrogate parameters. Journal of Heart and Lung Transplantation, 2021, 40, 387-391.	0.6	13
20	The Sodium-Glucose Cotransporter-2 Inhibitor Canagliflozin Alleviates Endothelial Dysfunction Following In Vitro Vascular Ischemia/Reperfusion Injury in Rats. International Journal of Molecular Sciences, 2021, 22, 7774.	4.1	13
21	ls internal thoracic artery resistant to reperfusion injury? Evaluation of the storage of free internal thoracic artery grafts. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 1460-1469.	0.8	12
22	Identification of novel antigens contributing to autoimmunity in cardiovascular diseases. Clinical Immunology, 2016, 173, 64-75.	3.2	11
23	Myofilament Ca2+ sensitivity correlates with left ventricular contractility during the progression of pressure overload-induced left ventricular myocardial hypertrophy in rats. Journal of Molecular and Cellular Cardiology, 2019, 129, 208-218.	1.9	11
24	Brain-dead donor heart conservation with a preservation solution supplemented by a conditioned medium from mesenchymal stem cells improves graft contractility after transplantation. American Journal of Transplantation, 2020, 20, 2847-2856.	4.7	10
25	Incomplete structural reverse remodeling from late-stage left ventricular hypertrophy impedes the recovery of diastolic but not systolic dysfunction in rats. Journal of Hypertension, 2019, 37, 1200-1212.	0.5	9
26	Mild type 2 diabetes mellitus improves remote endothelial dysfunction after acute myocardial infarction. Journal of Diabetes and Its Complications, 2015, 29, 1253-1260.	2.3	8
27	Targeting Phosphodiesterase-5 by Vardenafil Improves Vascular Graft Function. European Journal of Vascular and Endovascular Surgery, 2018, 56, 256-263.	1.5	8
28	Reconditioning of circulatory death hearts by ex-vivo machine perfusion with a novel HTK-N preservation solution. Journal of Heart and Lung Transplantation, 2021, 40, 1135-1144.	0.6	8
29	Sex similarities and differences in the reverse and anti-remodeling effect of pressure unloading therapy in a rat model of aortic banding and debanding. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 323, H204-H222.	3.2	7
30	Prolonging hypothermic ischaemic cardiac and vascular storage by inhibiting the activation of the nuclear enzyme poly(adenosine diphosphate-ribose) polymerase. European Journal of Cardio-thoracic Surgery, 2017, 51, 829-835.	1.4	6
31	Impairment of the Akt pathway in transplanted Type 1 diabetic hearts is associated with post-transplant graft injuryâ€. Interactive Cardiovascular and Thoracic Surgery, 2018, 27, 884-894.	1.1	5
32	Comparison of the Reverse-Remodeling Effect of Pharmacological Soluble Guanylate Cyclase Activation With Pressure Unloading in Pathological Myocardial Left Ventricular Hypertrophy. Frontiers in Physiology, 2018, 9, 1869.	2.8	4
33	Stimulation of soluble guanylate cyclase improves donor organ function in rat heart transplantation. Scientific Reports, 2020, 10, 5358.	3.3	4
34	Graft Preservation Solution DuraGraft® Alleviates Vascular Dysfunction Following In Vitro Ischemia/Reperfusion Injury in Rats. Pharmaceuticals, 2021, 14, 1028.	3.8	4
35	Ethical Decision Diagrams on Donation After Cardiocirculatory Death Heart Transplantation Considering Organ Preservation Techniques. Transplantation Direct, 2020, 6, e617.	1.6	4
36	Combined treatment with olmesartan medoxomil and amlodipine besylate attenuates atherosclerotic lesion progression in a model of advanced atherosclerosis. Drug Design, Development and Therapy, 2015, 9, 3935.	4.3	3

SEVIL KORKMAZ-ICöZ

#	Article	IF	CITATIONS
37	Mechanical pressure unloading therapy reverses thoracic aortic structural and functional changes in a hypertensive rat model. Journal of Hypertension, 2018, 36, 2350-2361.	0.5	3
38	Pharmacological activation of soluble guanylate cyclase improves vascular graft function. Interactive Cardiovascular and Thoracic Surgery, 2021, 32, 803-811.	1.1	3
39	Conditioned Medium from Mesenchymal Stem Cells Alleviates Endothelial Dysfunction of Vascular Grafts Submitted to Ischemia/Reperfusion Injury in 15-Month-Old Rats. Cells, 2021, 10, 1231.	4.1	2
40	Aspirin Reduces Ischemia-Reperfusion Injury Induced Endothelial Cell Damage of Arterial Grafts in a Rodent Model. Antioxidants, 2022, 11, 177.	5.1	2
41	N-octanoyl dopamine is superior to dopamine in protecting graft contractile function when administered to the heart transplant recipients from brain-dead donors. Pharmacological Research, 2019, 150, 104503.	7.1	1
42	Relationship of Laser-Doppler-Flow and coronary perfusion and a concise update on the importance of coronary microcirculation in donor heart machine perfusion. Clinical Hemorheology and Microcirculation, 2021, 79, 1-8.	1.7	1
43	Left-ventricular hypertrophy in 18-month-old donor rat hearts was not associated with graft dysfunction in the early phase of reperfusion after cardiac transplantation–gene expression profiling. GeroScience, 2021, 43, 1995-2013.	4.6	0
44	Impact of skeletonized harvesting of the internal thoracic artery on intrasternal microcirculation considering preparation quality. Interactive Cardiovascular and Thoracic Surgery, 2021, 33, 779-783.	1.1	0