
Boyer D Winters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8910827/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Age-dependent attenuation of spatial memory deficits by the histone acetyltransferase p300/CBP-associated factor (PCAF) in 3xTG Alzheimer's disease mice. Learning and Memory, 2022, 29, 71-76.	0.5	2
2	The evidence for and against reactivation-induced memory updating in humans and nonhuman animals. Neuroscience and Biobehavioral Reviews, 2022, 136, 104598.	2.9	12
3	Muscarinic (<scp>M₁</scp>) cholinergic receptor activation within the dorsal hippocampus promotes destabilization of strongly encoded object location memories. Hippocampus, 2022, 32, 55-66.	0.9	10
4	Histone macroH2A1 is a stronger regulator of hippocampal transcription and memory than macroH2A2 in mice. Communications Biology, 2022, 5, 482.	2.0	5
5	The effects of morphine withdrawal and conditioned withdrawal on memory consolidation and câ€Fos expression in the central amygdala. Addiction Biology, 2021, 26, e12909.	1.4	8
6	Effects of vapourized THC and voluntary alcohol drinking during adolescence on cognition, reward, and anxiety-like behaviours in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 106, 110141.	2.5	25
7	Memory enhancing effects of nicotine, cocaine, and their conditioned stimuli; effects of beta-adrenergic and dopamine D2 receptor antagonists. Psychopharmacology, 2021, 238, 2617-2628.	1.5	7
8	Fluctuating NMDA Receptor Subunit Levels in Perirhinal Cortex Relate to Their Dynamic Roles in Object Memory Destabilization and Reconsolidation. International Journal of Molecular Sciences, 2021, 22, 67.	1.8	12
9	Activation of cortical M1 muscarinic receptors and related intracellular signaling is necessary for reactivation-induced object memory updating. Scientific Reports, 2020, 10, 9209.	1.6	12
10	Modulation of object memory consolidation by heroin and heroin-conditioned stimuli: Role of opioid and noradrenergic systems. European Neuropsychopharmacology, 2020, 33, 146-157.	0.3	13
11	Dissociable involvement of estrogen receptors in perirhinal cortex-mediated object-place memory in male rats. Psychoneuroendocrinology, 2019, 107, 98-108.	1.3	21
12	The Clock Mechanism Influences Neurobiology and Adaptations to Heart Failure in Clockâ^†19/â^†19 Mice With Implications for Circadian Medicine. Scientific Reports, 2019, 9, 4994.	1.6	18
13	Cocaine, nicotine, and their conditioned contexts enhance consolidation of object memory in rats. Learning and Memory, 2019, 26, 46-55.	0.5	14
14	Dissociable cognitive impairments in two strains of transgenic Alzheimer's disease mice revealed by a battery of object-based tests. Scientific Reports, 2019, 9, 57.	1.6	45
15	MouseBytes, an open-access high-throughput pipeline and database for rodent touchscreen-based cognitive assessment. ELife, 2019, 8, .	2.8	38
16	Development of novel tasks for studying view-invariant object recognition in rodents: Sensitivity to scopolamine. Behavioural Brain Research, 2018, 344, 48-56.	1.2	8
17	Involvement of classical neurotransmitter systems in memory reconsolidation: Focus on destabilization. Neurobiology of Learning and Memory, 2018, 156, 68-79.	1.0	45
18	Rapid effects of dorsal hippocampal G-protein coupled estrogen receptor on learning in female mice. Psychoneuroendocrinology, 2017, 77, 131-140.	1.3	57

BOYER D WINTERS

#	Article	IF	CITATIONS
19	Linking muscarinic receptor activation to UPS-mediated object memory destabilization: Implications for long-term memory modification and storage. Neurobiology of Learning and Memory, 2017, 145, 151-164.	1.0	17
20	Mice deficient for striatal Vesicular Acetylcholine Transporter (VAChT) display impaired short-term but normal long-term object recognition memory. Behavioural Brain Research, 2016, 311, 267-278.	1.2	11
21	Postsynaptic nicotinic acetylcholine receptors facilitate excitation of developing CA1 pyramidal neurons. Journal of Neurophysiology, 2016, 116, 2043-2055.	0.9	8
22	The Dynamic Multisensory Engram: Neural Circuitry Underlying Crossmodal Object Recognition in Rats Changes with the Nature of Object Experience. Journal of Neuroscience, 2016, 36, 1273-1289.	1.7	33
23	Evidence for a specific role for muscarinic receptors in crossmodal object recognition in rats. Neurobiology of Learning and Memory, 2015, 118, 125-132.	1.0	9
24	Cholinergic manipulations bidirectionally regulate object memory destabilization. Learning and Memory, 2015, 22, 203-214.	0.5	30
25	α4β2 nicotinic receptor stimulation of the GABAergic system within the orbitofrontal cortex ameliorates the severe crossmodal object recognition impairment in ketamine-treated rats: Implications for cognitive dysfunction in schizophrenia. Neuropharmacology, 2015, 90, 42-52.	2.0	20
26	The neural bases of crossmodal object recognition in non-human primates and rodents: A review. Behavioural Brain Research, 2015, 285, 118-130.	1.2	17
27	Delineating Prefrontal Cortex Region Contributions to Crossmodal Object Recognition in Rats. Cerebral Cortex, 2014, 24, 2108-2119.	1.6	32
28	Different roles for M1 and M2 receptors within perirhinal cortex in object recognition and discrimination. Neurobiology of Learning and Memory, 2014, 110, 16-26.	1.0	11
29	Mechanisms governing the reactivation-dependent destabilization of memories and their role in extinction. Frontiers in Behavioral Neuroscience, 2013, 7, 214.	1.0	34
30	On the Dynamic Nature of the Engram: Evidence for Circuit-Level Reorganization of Object Memory Traces following Reactivation. Journal of Neuroscience, 2011, 31, 17719-17728.	1.7	57
31	Implications of animal object memory research for human amnesia. Neuropsychologia, 2010, 48, 2251-2261.	0.7	51
32	A Distributed Cortical Representation Underlies Crossmodal Object Recognition in Rats. Journal of Neuroscience, 2010, 30, 6253-6261.	1.7	108
33	Muscimol, AP5, or scopolamine infused into perirhinal cortex impairs two-choice visual discrimination learning in rats. Neurobiology of Learning and Memory, 2010, 93, 221-228.	1.0	50
34	Older and stronger object memories are selectively destabilized by reactivation in the presence of new information. Learning and Memory, 2009, 16, 545-553.	0.5	115
35	Object recognition memory: Neurobiological mechanisms of encoding, consolidation and retrieval. Neuroscience and Biobehavioral Reviews, 2008, 32, 1055-1070.	2.9	493
36	The touchscreen cognitive testing method for rodents: How to get the best out of your rat. Learning and Memory, 2008, 15, 516-523.	0.5	228

BOYER D WINTERS

#	Article	IF	CITATIONS
37	Scopolamine infused into perirhinal cortex improves object recognition memory by blocking the acquisition of interfering object information. Learning and Memory, 2007, 14, 590-596.	0.5	45
38	Paradoxical Facilitation of Object Recognition Memory after Infusion of Scopolamine into Perirhinal Cortex: Implications for Cholinergic System Function. Journal of Neuroscience, 2006, 26, 9520-9529.	1.7	84
39	Removal of cholinergic input to perirhinal cortex disrupts object recognition but not spatial working memory in the rat. European Journal of Neuroscience, 2005, 21, 2263-2270.	1.2	113
40	Transient Inactivation of Perirhinal Cortex Disrupts Encoding, Retrieval, and Consolidation of Object Recognition Memory. Journal of Neuroscience, 2005, 25, 52-61.	1.7	250
41	Glutamate Receptors in Perirhinal Cortex Mediate Encoding, Retrieval, and Consolidation of Object Recognition Memory. Journal of Neuroscience, 2005, 25, 4243-4251.	1.7	194
42	Selective cholinergic denervation of the cingulate cortex impairs the acquisition and performance of a conditional visual discrimination in rats. European Journal of Neuroscience, 2004, 19, 490-496.	1.2	13
43	Double Dissociation between the Effects of Peri-Postrhinal Cortex and Hippocampal Lesions on Tests of Object Recognition and Spatial Memory: Heterogeneity of Function within the Temporal Lobe. Journal of Neuroscience, 2004, 24, 5901-5908.	1.7	522
44	Selective Lesioning of the Cholinergic Septo-Hippocampal Pathway Does Not Disrupt Spatial Short-Term Memory: A Comparison With the Effects of Fimbria-Fornix Lesions Behavioral Neuroscience, 2004, 118, 546-562.	0.6	36

4