Carole Escartin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8910810/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Astrocytes and neuropsychiatric symptoms in neurodegenerative diseases: Exploring the missing links. Current Opinion in Neurobiology, 2022, 72, 63-71.	4.2	3
2	Multi-transcriptomic analysis points to early organelle dysfunction in human astrocytes in Alzheimer's disease. Neurobiology of Disease, 2022, 166, 105655.	4.4	33
3	Characterizing extracellular diffusion properties using diffusionâ€weighted MRS of sucrose injected in mouse brain. NMR in Biomedicine, 2021, 34, e4478.	2.8	5
4	Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 2021, 24, 312-325.	14.8	1,098
5	Neuronal tau species transfer to astrocytes and induce their loss according to tau aggregation state. Brain, 2021, 144, 1167-1182.	7.6	27
6	STAT3-Mediated Astrocyte Reactivity Associated with Brain Metastasis Contributes to Neurovascular Dysfunction. Cancer Research, 2020, 80, 5642-5655.	0.9	18
7	Complex roles for reactive astrocytes in the triple transgenic mouse model of Alzheimer disease. Neurobiology of Aging, 2020, 90, 135-146.	3.1	23
8	Emerging technologies to study glial cells. Glia, 2020, 68, 1692-1728.	4.9	32
9	Questions and (some) answers on reactive astrocytes. Clia, 2019, 67, 2221-2247.	4.9	185
10	Diffusion-weighted magnetic resonance spectroscopy enables cell-specific monitoring of astrocyte reactivity in vivo. Neurolmage, 2019, 191, 457-469.	4.2	42
11	A42â€Reactive astrocytes promote proteostasis in huntington's disease. , 2018, , .		1
12	Modulation of astrocyte reactivity improves functional deficits in mouse models of Alzheimer's disease. Acta Neuropathologica Communications, 2018, 6, 104.	5.2	134
13	O2â€07â€04: Specific Inhibition of Astrocyte Reactivity Improves Some Disease Outcomes in Alzheimer's Disease Mice. Alzheimer's and Dementia, 2016, 12, P242.	0.8	0
14	Multifaceted roles for astrocytes in spreading depolarization: A target for limiting spreading depolarization in acute brain injury?. Clia, 2016, 64, 5-20.	4.9	56
15	New paradigm to assess brain cell morphology by diffusion-weighted MR spectroscopy in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6671-6676.	7.1	81
16	The complex STATes of astrocyte reactivity: How are they controlled by the JAK–STAT3 pathway?. Neuroscience, 2016, 330, 205-218.	2.3	122
17	Ciliary neurotrophic factor (CNTF) activation of astrocytes decreases spreading depolarization susceptibility and increases potassium clearance. Glia, 2015, 63, 91-103.	4.9	24
18	Elusive roles for reactive astrocytes in neurodegenerative diseases. Frontiers in Cellular Neuroscience, 2015, 9, 278.	3.7	327

CAROLE ESCARTIN

#	Article	IF	CITATIONS
19	The Neuroprotective Agent CNTF Decreases Neuronal Metabolites in the Rat Striatum: An <i>in Vivo</i> Multimodal Magnetic Resonance Imaging Study. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 917-921.	4.3	21
20	The JAK/STAT3 Pathway Is a Common Inducer of Astrocyte Reactivity in Alzheimer's and Huntington's Diseases. Journal of Neuroscience, 2015, 35, 2817-2829.	3.6	221
21	System xCâ^' is a mediator of microglial function and its deletion slows symptoms in amyotrophic lateral sclerosis mice. Brain, 2015, 138, 53-68.	7.6	85
22	Imaging and monitoring astrocytes in health and disease. Frontiers in Cellular Neuroscience, 2014, 8, 74.	3.7	3
23	Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nature Neuroscience, 2014, 17, 549-558.	14.8	269
24	Impaired Brain Energy Metabolism in the BACHD Mouse Model of Huntington's Disease: Critical Role of Astrocyte–Neuron Interactions. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1500-1510.	4.3	50
25	Astroglial networking contributes to neurometabolic coupling. Frontiers in Neuroenergetics, 2013, 5, 4.	5.3	44
26	Lentiviral Vectors: A Powerful Tool to Target Astrocytes In Vivo. Current Drug Targets, 2013, 14, 1336-1346.	2.1	20
27	Reactive Astrocytes Overexpress TSPO and Are Detected by TSPO Positron Emission Tomography Imaging. Journal of Neuroscience, 2012, 32, 10809-10818.	3.6	286
28	Poly(ADP-ribose)polymerase-1 modulates microglial responses to amyloid β. Journal of Neuroinflammation, 2011, 8, 152.	7.2	87
29	Nuclear Factor Erythroid 2-Related Factor 2 Facilitates Neuronal Glutathione Synthesis by Upregulating Neuronal Excitatory Amino Acid Transporter 3 Expression. Journal of Neuroscience, 2011, 31, 7392-7401.	3.6	86
30	The Nrf2 pathway as a potential therapeutic target for Huntington disease. Free Radical Biology and Medicine, 2010, 49, 144-146.	2.9	8
31	Ciliary Neurotrophic Factor Protects Striatal Neurons against Excitotoxicity by Enhancing Glial Glutamate Uptake. PLoS ONE, 2010, 5, e8550.	2.5	38
32	Normal Aging Modulates the Neurotoxicity of Mutant Huntingtin. PLoS ONE, 2009, 4, e4637.	2.5	29
33	Astrocyte cultures exhibit P2X7 receptor channel opening in the absence of exogenous ligands. Clia, 2009, 57, 622-633.	4.9	52
34	Targeted Activation of Astrocytes: A Potential Neuroprotective Strategy. Molecular Neurobiology, 2008, 38, 231-241.	4.0	103
35	Zinc Triggers Microglial Activation. Journal of Neuroscience, 2008, 28, 5827-5835.	3.6	157
36	Activation of Astrocytes by CNTF Induces Metabolic Plasticity and Increases Resistance to Metabolic Insults. Journal of Neuroscience, 2007, 27, 7094-7104.	3.6	103

CAROLE ESCARTIN

#	Article	IF	CITATIONS
37	IGF-1 exacerbates the neurotoxicity of the mitochondrial inhibitor 3NP in rats. Neuroscience Letters, 2007, 425, 167-172.	2.1	14
38	Transplants of CNTF-producing Cells for the Treatment of Huntington's Disease. , 2007, , 385-398.		2
39	Neuron?astrocyte interactions in the regulation of brain energy metabolism: a focus on NMR spectroscopy. Journal of Neurochemistry, 2006, 99, 393-401.	3.9	51
40	Brain mitochondrial defects amplify intracellular [Ca 2+] rise and neurodegeneration but not Ca 2+ entry during NMDA receptor activation. FASEB Journal, 2006, 20, 1021-1023.	0.5	63
41	Ciliary Neurotrophic Factor Activates Astrocytes, Redistributes Their Glutamate Transporters GLAST and GLT-1 to Raft Microdomains, and Improves Glutamate Handling In Vivo. Journal of Neuroscience, 2006, 26, 5978-5989.	3.6	79
42	Decreased metabolic response to visual stimulation in the superior colliculus of mice lacking the glial glutamate transporter GLT-1. European Journal of Neuroscience, 2005, 22, 1807-1811.	2.6	19
43	Insulin growth factor-1 protects against excitotoxicity in the rat striatum. NeuroReport, 2004, 15, 2251-2254.	1.2	12
44	In Vivo Calpain/Caspase Cross-talk during 3-Nitropropionic Acid-induced Striatal Degeneration. Journal of Biological Chemistry, 2003, 278, 43245-43253.	3.4	116
45	Calpain Is a Major Cell Death Effector in Selective Striatal Degeneration Induced <i>In Vivo</i> by 3-Nitropropionate: Implications for Huntington's Disease. Journal of Neuroscience, 2003, 23, 5020-5030.	3.6	154
46	Corticostriatopallidal Neuroprotection by Adenovirus-Mediated Ciliary Neurotrophic Factor Gene Transfer in a Rat Model of Progressive Striatal Degeneration. Journal of Neuroscience, 2002, 22, 4478-4486.	3.6	84
47	DEVEA: an interactive shiny application for Differential Expression analysis, data Visualization and Enrichment Analysis of transcriptomics data. F1000Research, 0, 11, 711.	1.6	Ο