Haotian Bai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8910787/publications.pdf

Version: 2024-02-01

		159585	1	175258	
51	3,270	30		52	
papers	citations	h-index		g-index	
54	54	54		3559	
34	34	34		3333	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Selective Fluorescence Imaging of Cancer Cells Based on ROSâ€Triggered Intracellular Crossâ€Linking of Artificial Enzyme. Angewandte Chemie, 2022, 134, .	2.0	3
2	Organic Semiconductor–Organism Interfaces for Augmenting Natural and Artificial Photosynthesis. Accounts of Chemical Research, 2022, 55, 156-170.	15.6	31
3	Solar-Driven Producing of Value-Added Chemicals with Organic Semiconductor-Bacteria Biohybrid System. Research, 2022, 2022, 9834093.	5.7	8
4	Aggregationâ€induced emission luminogens for augmented photosynthesis. Exploration, 2022, 2, .	11.0	19
5	Bacteria-Mediated Intracellular Click Reaction for Drug Enrichment and Selective Apoptosis of Drug-Resistant Tumor Cells. ACS Applied Materials & Samp; Interfaces, 2022, 14, 12106-12115.	8.0	14
6	Conjugated Polymers for Gene Delivery and Photothermal Gene Expression. ChemPlusChem, 2022, 87, e202200073.	2.8	6
7	Conjugated polymers for biomedical applications. Chemical Communications, 2022, 58, 7232-7244.	4.1	35
8	Flexible bioelectronic device fabricated by conductive polymer–based living material. Science Advances, 2022, 8, .	10.3	24
9	Design of functional polymer nanomaterials for antimicrobial therapy and combatting resistance. Materials Chemistry Frontiers, 2021, 5, 1236-1252.	5.9	49
10	AlEgens for microbial detection and antimicrobial therapy. Biomaterials, 2021, 268, 120598.	11.4	86
11	Augmenting photosynthesis through facile AIEgen-chloroplast conjugation and efficient solar energy utilization. Materials Horizons, 2021, 8, 1433-1438.	12.2	21
12	A biocompatible dual-AlEgen system without spectral overlap for quantitation of microbial viability and monitoring of biofilm formation. Materials Horizons, 2021, 8, 1816-1824.	12.2	7
13	Aggregation-induced emission nanoparticles with NIR and photosensitizing characteristics for resistant bacteria elimination and real-time tracking. Materials Chemistry Frontiers, 2021, 5, 6611-6617.	5.9	11
14	Catalyst-Free Spontaneous Polymerization with 100% Atom Economy: Facile Synthesis of Photoresponsive Polysulfonates with Multifunctionalities. Jacs Au, 2021, 1, 344-353.	7.9	14
15	Waterâ€Soluble Organic Nanoparticles with Programable Intermolecular Charge Transfer for NIRâ€N Photothermal Antiâ€Bacterial Therapy. Angewandte Chemie, 2021, 133, 11864-11868.	2.0	16
16	Functionalization of Silk by AlEgens through Facile Bioconjugation: Fullâ€Color Fluorescence and Longâ€Term Bioimaging. Angewandte Chemie, 2021, 133, 12532-12538.	2.0	6
17	Functionalization of Silk by AlEgens through Facile Bioconjugation: Fullâ€Color Fluorescence and Longâ€Term Bioimaging. Angewandte Chemie - International Edition, 2021, 60, 12424-12430.	13.8	46
18	Waterâ€Soluble Organic Nanoparticles with Programable Intermolecular Charge Transfer for NIRâ€N Photothermal Antiâ€Bacterial Therapy. Angewandte Chemie - International Edition, 2021, 60, 11758-11762.	13.8	91

#	Article	IF	Citations
19	Mitochondria-Specific Aggregation-Induced Emission Luminogens for Selective Photodynamic Killing of Fungi and Efficacious Treatment of Keratitis. ACS Nano, 2021, 15, 12129-12139.	14.6	46
20	Recent Advances in Aggregationâ€Induced Emission Materials and Their Biomedical and Healthcare Applications. Advanced Healthcare Materials, 2021, 10, e2101055.	7.6	36
21	Highly efficient photothermal nanoparticles for the rapid eradication of bacterial biofilms. Nanoscale, 2021, 13, 13610-13616.	5.6	15
22	Boosting Cyanobacteria Growth by Fivefold with Aggregation-Induced Emission Luminogens: Toward the Development of a Biofactory. ACS Sustainable Chemistry and Engineering, 2021, 9, 15258-15266.	6.7	9
23	Conjugated Polymer-Quantum Dot Hybrid Materials for Pathogen Discrimination and Disinfection. ACS Applied Materials & Discrimination and Disinfection.	8.0	41
24	Multifunctional Supramolecular Assemblies with Aggregation-Induced Emission (AIE) for Cell Line Identification, Cell Contamination Evaluation, and Cancer Cell Discrimination. ACS Nano, 2020, 14, 7552-7563.	14.6	59
25	Conjugated Polymer Nanomaterials for Phototherapy of Cancer. Chemical Research in Chinese Universities, 2020, 36, 237-242.	2.6	27
26	One stone, three birds: one AlEgen with three colors for fast differentiation of three pathogens. Chemical Science, 2020, 11, 4730-4740.	7.4	59
27	Supramolecular Antibacterial Materials for Combatting Antibiotic Resistance. Advanced Materials, 2019, 31, e1805092.	21.0	380
28	Luminescent, Oxygenâ€Supplying, Hemoglobinâ€Linked Conjugated Polymer Nanoparticles for Photodynamic Therapy. Angewandte Chemie - International Edition, 2019, 58, 10660-10665.	13.8	188
29	Luminescent, Oxygenâ€Supplying, Hemoglobinâ€Linked Conjugated Polymer Nanoparticles for Photodynamic Therapy. Angewandte Chemie, 2019, 131, 10770-10775.	2.0	42
30	Antibacterial supramolecular polymers constructed <i>via </i> self-sorting: promoting antibacterial performance and controllable degradation. Materials Chemistry Frontiers, 2019, 3, 806-811.	5.9	30
31	Designing an Amino-Fullerene Derivative C ₇₀ –(EDA) ₈ to Fight Superbacteria. ACS Applied Materials & Interfaces, 2019, 11, 14597-14607.	8.0	38
32	Sunlightâ€Driven Wearable and Robust Antibacterial Coatings with Waterâ€Soluble Celluloseâ€Based Photosensitizers. Advanced Healthcare Materials, 2019, 8, e1801591.	7.6	50
33	Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness. Nature Communications, 2019, 10, 795.	12.8	279
34	Optically-controlled supramolecular self-assembly of an antibiotic for antibacterial regulation. Chemical Communications, 2019, 55, 14466-14469.	4.1	14
35	Supramolecular Strategy Based on Conjugated Polymers for Discrimination of Virus and Pathogens. Biomacromolecules, 2018, 19, 2117-2122.	5.4	34
36	Electrochemiluminescence for Electric-Driven Antibacterial Therapeutics. Journal of the American Chemical Society, 2018, 140, 2284-2291.	13.7	180

#	Article	IF	CITATIONS
37	Photothermalâ€Responsive Conjugated Polymer Nanoparticles for Remote Control of Gene Expression in Living Cells. Advanced Materials, 2018, 30, 1705418.	21.0	110
38	Conjugated Polymer with Aggregation-Directed Intramolecular FÃ \P rster Resonance Energy Transfer Enabling Efficient Discrimination and Killing of Microbial Pathogens. Chemistry of Materials, 2018, 30, 3244-3253.	6.7	55
39	Supramolecular Conjugated Polymer Systems with Controlled Antibacterial Activity. Langmuir, 2017, 33, 1116-1120.	3.5	45
40	Supramolecular Porphyrin Photosensitizers: Controllable Disguise and Photoinduced Activation of Antibacterial Behavior. ACS Applied Materials & Samp; Interfaces, 2017, 9, 13950-13957.	8.0	129
41	Efficient Conjugated Polymer–Methyl Viologen Electron Transfer System for Controlled Photo-Driven Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2017, 9, 10355-10359.	8.0	66
42	Tuning Antibacterial Activity of Cyclodextrin-Attached Cationic Ammonium Surfactants by a Supramolecular Approach. ACS Applied Materials & Supramolecular Approach. ACS Applied Materials & Supramolecular Approach. ACS Applied Materials & Supramolecular Approach.	8.0	28
43	Supramolecular Germicide Switches through Hostâ€Guest Interactions for Decelerating Emergence of Drugâ€Resistant Pathogens. ChemistrySelect, 2017, 2, 7940-7945.	1.5	16
44	Polythiophene–Peptide Biohybrid Assemblies for Enhancing Photoinduced Hydrogen Evolution. Advanced Electronic Materials, 2017, 3, 1700161.	5.1	18
45	Supramolecular Radical Anions Triggered by Bacteria Inâ€Situ for Selective Photothermal Therapy. Angewandte Chemie, 2017, 129, 16457-16460.	2.0	46
46	Supramolecular Radical Anions Triggered by Bacteria Inâ€Situ for Selective Photothermal Therapy. Angewandte Chemie - International Edition, 2017, 56, 16239-16242.	13.8	235
47	Supramolecular Antibiotic Switches: A Potential Strategy for Combating Drug Resistance. Chemistry - A European Journal, 2016, 22, 11114-11121.	3.3	61
48	Polypseudorotaxane Constructed from Cationic Polymer with Cucurbit[7]uril for Controlled Antibacterial Activity. ACS Macro Letters, 2016, 5, 1109-1113.	4.8	53
49	Supramolecular Conjugated Polymer Materials for in Situ Pathogen Detection. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31550-31557.	8.0	73
50	A Supramolecular Antibiotic Switch for Antibacterial Regulation. Angewandte Chemie - International Edition, 2015, 54, 13208-13213.	13.8	256
51	A glucose-powered antimicrobial system using organic–inorganic assembled network materials. Chemical Communications, 2015, 51, 722-724.	4.1	33