Asif Ekbal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8910562/publications.pdf

Version: 2024-02-01

		777949	620720
54	849	13	26
papers	citations	h-index	g-index
54	54	54	853
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Predicting Politeness Variations in Goal-Oriented Conversations. IEEE Transactions on Computational Social Systems, 2023, 10, 1095-1104.	3.2	3
2	<i>SEHC</i> : A Benchmark Setup to Identify Online Hate Speech in English. IEEE Transactions on Computational Social Systems, 2023, 10, 760-770.	3.2	7
3	Zero-Shot Hate to Non-Hate Text Conversion Using Lexical Constraints. IEEE Transactions on Computational Social Systems, 2023, 10, 2479-2488.	3.2	1
4	Being Polite: Modeling Politeness Variation in a Personalized Dialog Agent. IEEE Transactions on Computational Social Systems, 2023, 10, 1455-1464.	3. 2	3
5	All-in-One: Emotion, Sentiment and Intensity Prediction Using a Multi-Task Ensemble Framework. IEEE Transactions on Affective Computing, 2022, 13, 285-297.	5 . 7	52
6	EmoSen: Generating Sentiment and Emotion Controlled Responses in a Multimodal Dialogue System. IEEE Transactions on Affective Computing, 2022, 13, 1555-1566.	5.7	16
7	Measuring Temporal Distance Focus From Tweets and Investigating its Association With Psycho-Demographic Attributes. IEEE Transactions on Affective Computing, 2022, 13, 1086-1097.	5.7	1
8	What Does Your Bio Say? Inferring Twitter Users' Depression Status From Multimodal Profile Information Using Deep Learning. IEEE Transactions on Computational Social Systems, 2022, 9, 1484-1494.	3.2	14
9	Investigating the impact of emotion on temporal orientation in a deep multitask setting. Scientific Reports, 2022, 12, 493.	1.6	6
10	CARES: CAuse Recognition for Emotion in Suicide Notes. Lecture Notes in Computer Science, 2022, , 128-136.	1.0	6
11	Sentiment Guided Aspect Conditioned Dialogue Generation inÂaÂMultimodal System. Lecture Notes in Computer Science, 2022, , 199-214.	1.0	2
12	Novelty Detection: A Perspective from Natural Language Processing. Computational Linguistics, 2022, 48, 77-117.	2.5	5
13	Deep cascaded multitask framework for detection of temporal orientation, sentiment and emotion from suicide notes. Scientific Reports, 2022, 12, 4457.	1.6	5
14	Unity in Diversity: Multilabel Emoji Identification in Tweets. IEEE Transactions on Computational Social Systems, 2022, , 1-10.	3.2	2
15	Aspect-Aware Response Generation for Multimodal Dialogue System. ACM Transactions on Intelligent Systems and Technology, 2021, 12, 1-33.	2.9	9
16	Augmenting training data with syntactic phrasal-segments in low-resource neural machine translation. Machine Translation, 2021, 35, 661-685.	1.3	2
17	A Deep Neural Network Framework for English Hindi Question Answering. ACM Transactions on Asian and Low-Resource Language Information Processing, 2020, 19, 1-22.	1.3	16
18	Statistical machine translation based on weighted syntax–semantics. Sadhana - Academy Proceedings in Engineering Sciences, 2020, 45, 1.	0.8	12

#	Article	IF	CITATIONS
19	Syntax-Informed Interactive Neural Machine Translation. , 2020, , .		1
20	Towards Predicting Risk of Coronary Artery Disease from Semi-Structured Dataset. Interdisciplinary Sciences, Computational Life Sciences, 2020, 12, 537-546.	2.2	2
21	How Intense Are You? Predicting Intensities of Emotions and Sentiments using Stacked Ensemble [Application Notes]. IEEE Computational Intelligence Magazine, 2020, 15, 64-75.	3.4	187
22	Towards building an affect-aware dialogue agent with deep neural networks. CSI Transactions on ICT, 2020, 8, 249-255.	0.7	2
23	More to diverse: Generating diversified responses in a task oriented multimodal dialog system. PLoS ONE, 2020, 15, e0241271.	1.1	5
24	More to diverse: Generating diversified responses in a task oriented multimodal dialog system. , 2020, 15, e0241271.		0
25	More to diverse: Generating diversified responses in a task oriented multimodal dialog system. , 2020, 15, e0241271.		0
26	More to diverse: Generating diversified responses in a task oriented multimodal dialog system. , 2020, 15, e0241271.		0
27	More to diverse: Generating diversified responses in a task oriented multimodal dialog system. , 2020, 15, e0241271.		0
28	More to diverse: Generating diversified responses in a task oriented multimodal dialog system. , 2020, 15, e0241271.		0
29	More to diverse: Generating diversified responses in a task oriented multimodal dialog system. , 2020, 15, e0241271.		0
30	More to diverse: Generating diversified responses in a task oriented multimodal dialog system. , 2020, 15, e0241271.		0
31	Resolution of grammatical tense into actual time, and its application in Time Perspective study in the tweet space. PLoS ONE, 2019, 14, e0211872.	1.1	4
32	Improving Word Embedding Coverage in Less-Resourced Languages Through Multi-Linguality and Cross-Linguality. ACM Transactions on Asian and Low-Resource Language Information Processing, 2019, 18, 1-22.	1.3	9
33	Tempo-HindiWordNet. ACM Transactions on Asian and Low-Resource Language Information Processing, 2019, 18, 1-22.	1.3	1
34	Machine Learning Based Optimized Pruning Approach for Decoding in Statistical Machine Translation. IEEE Access, 2019, 7, 1736-1751.	2.6	22
35	Information theoretic-PSO-based feature selection: an application in biomedical entity extraction. Knowledge and Information Systems, 2019, 60, 1453-1478.	2.1	11
36	Ordinal and Attribute Aware Response Generation in a Multimodal Dialogue System. , 2019, , .		23

#	Article	lF	Citations
37	Feature selection for entity extraction from multiple biomedical corpora: A PSO-based approach. Soft Computing, 2018, 22, 6881-6904.	2.1	26
38	Feature selection and ensemble construction: A two-step method for aspect based sentiment analysis. Knowledge-Based Systems, 2017, 125, 116-135.	4.0	129
39	A Multilayer Perceptron based Ensemble Technique for Fine-grained Financial Sentiment Analysis. , 2017, , .		75
40	lITP at EmoInt-2017: Measuring Intensity of Emotions using Sentence Embeddings and Optimized Features. , 2017, , .		5
41	On active annotation for named entity recognition. International Journal of Machine Learning and Cybernetics, 2016, 7, 623-640.	2.3	15
42	A deep learning architecture for protein-protein Interaction Article identification. , 2016, , .		3
43	MODE: multiobjective differential evolution for feature selection and classifier ensemble. Soft Computing, 2015, 19, 3529-3549.	2.1	28
44	Investigating active learning techniques for document level sentiment classification of tweets. , 2015, , .		1
45	Event extraction from biomedical text using CRF and genetic algorithm. , 2015, , .		2
46	Differential evolution-based feature selection technique for anaphora resolution. Soft Computing, 2015, 19, 2149-2161.	2.1	24
47	Feature Extraction and Opinion Mining in Online Product Reviews. , 2014, , .		11
48	Named entity recognition in Bengali using system combination. Lingvisticae Investigationes, 2014, 37, 1-22.	0.3	6
49	Bi-objective portfolio optimization using Archive Multi-objective Simulated Annealing. , 2014, , .		2
50	Feature selection and semi-supervised clustering using multiobjective optimization. SpringerPlus, 2014, 3, 465.	1.2	9
51	Combining feature selection and classifier ensemble using a multiobjective simulated annealing approach: application to named entity recognition. Soft Computing, 2013, 17, 1-16.	2.1	27
52	Differential evolution based mention detection for anaphora resolution. , 2013, , .		2
53	Bio-molecular event extraction using Support Vector Machine. , 2011, , .		5
54	Weighted Vote-Based Classifier Ensemble for Named Entity Recognition. ACM Transactions on Asian Language Information Processing, 2011, 10, 1-37.	0.8	50