

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8910464/publications.pdf Version: 2024-02-01

Οιανι Υιι

#	Article	IF	CITATIONS
1	Superhydrophobic photothermal coatings based on candle soot for prevention of biofilm formation. Journal of Materials Science and Technology, 2023, 132, 18-26.	5.6	46
2	Photothermal scaffolds/surfaces for regulation of cell behaviors. Bioactive Materials, 2022, 8, 449-477.	8.6	23
3	Dual-functional bacterial cellulose modified with phase-transitioned proteins and gold nanorods combining antifouling and photothermal bactericidal properties. Journal of Materials Science and Technology, 2022, 110, 14-23.	5.6	31
4	A Photothermal Nanoplatform with Sugar-Triggered Cleaning Ability for High-Efficiency Intracellular Delivery. ACS Applied Materials & Interfaces, 2022, 14, 2618-2628.	4.0	8
5	Photothermal bactericidal surfaces: killing bacteria using light instead of biocides. Biomaterials Science, 2021, 9, 10-22.	2.6	109
6	Release of VEGF and BMP9 from injectable alginate based composite hydrogel for treatment of myocardial infarction. Bioactive Materials, 2021, 6, 520-528.	8.6	53
7	Dual-function antibacterial surfaces to resist and kill bacteria: Painting a picture with two brushes simultaneously. Journal of Materials Science and Technology, 2021, 70, 24-38.	5.6	93
8	Dual-Functional Surfaces Based on an Antifouling Polymer and a Natural Antibiofilm Molecule: Prevention of Biofilm Formation without Using Biocides. ACS Applied Materials & Interfaces, 2021, 13, 45191-45200.	4.0	33
9	Biomaterials based cardiac patches for the treatment of myocardial infarction. Journal of Materials Science and Technology, 2021, 94, 77-89.	5.6	24
10	Exploration of smart antibacterial coatings for practical applications. Current Opinion in Chemical Engineering, 2021, 34, 100727.	3.8	39
11	Effective and biocompatible antibacterial surfaces via facile synthesis and surface modification of peptide polymers. Bioactive Materials, 2021, 6, 4531-4541.	8.6	34
12	Universal Antifouling and Photothermal Antibacterial Surfaces Based on Multifunctional Metal–Phenolic Networks for Prevention of Biofilm Formation. ACS Applied Materials & Interfaces, 2021, 13, 48403-48413.	4.0	44
13	Smart, Photothermally Activated, Antibacterial Surfaces with Thermally Triggered Bacteria-Releasing Properties. ACS Applied Materials & Interfaces, 2020, 12, 21283-21291.	4.0	116
14	A Universal Platform for Highâ€Efficiency "Engineering―Living Cells: Integration of Cell Capture, Intracellular Delivery of Biomolecules, and Cell Harvesting Functions. Advanced Functional Materials, 2020, 30, 1906362.	7.8	34
15	Surface-Mediated Intracellular Delivery by Physical Membrane Disruption. ACS Applied Materials & Interfaces, 2020, 12, 31054-31078.	4.0	22
16	Photothermally Activated Electrospun Nanofiber Mats for High-Efficiency Surface-Mediated Gene Transfection. ACS Applied Materials & Interfaces, 2020, 12, 7905-7914.	4.0	29
17	Multistimulus Responsive Biointerfaces with Switchable Bioadhesion and Surface Functions. ACS Applied Materials & Interfaces, 2020, 12, 5447-5455.	4.0	55
18	Practical Preparation of Infection-Resistant Biomedical Surfaces from Antimicrobial β-Peptide Polymers. ACS Applied Materials & Interfaces, 2019, 11, 18907-18913.	4.0	77

Qian Yu

#	Article	IF	CITATIONS
19	Two-in-One Platform for High-Efficiency Intracellular Delivery and Cell Harvest: When a Photothermal Agent Meets a Thermoresponsive Polymer. ACS Applied Materials & Interfaces, 2019, 11, 12357-12366.	4.0	35
20	Antibacterial Coatings: Responsive and Synergistic Antibacterial Coatings: Fighting against Bacteria in a Smart and Effective Way (Adv. Healthcare Mater. 3/2019). Advanced Healthcare Materials, 2019, 8, 1970007.	3.9	12
21	Responsive and Synergistic Antibacterial Coatings: Fighting against Bacteria in a Smart and Effective Way. Advanced Healthcare Materials, 2019, 8, e1801381.	3.9	270
22	Construction of nanomaterials with targeting phototherapy properties to inhibit resistant bacteria and biofilm infections. Chemical Engineering Journal, 2019, 358, 74-90.	6.6	170
23	Surface Modified with a Host Defense Peptide-Mimicking β-Peptide Polymer Kills Bacteria on Contact with High Efficacy. ACS Applied Materials & Interfaces, 2018, 10, 15395-15400.	4.0	117
24	Tissue-engineered Vascular Grafts: Balance of the Four Major Requirements. Colloids and Interface Science Communications, 2018, 23, 34-44.	2.0	53
25	A supramolecular approach for versatile biofunctionalization of magnetic nanoparticles. Journal of Materials Chemistry B, 2018, 6, 2198-2203.	2.9	27
26	Sweet Switch: Sugar-Responsive Bioactive Surfaces Based on Dynamic Covalent Bonding. ACS Applied Materials & Interfaces, 2018, 10, 10647-10655.	4.0	41
27	Gold nanoparticle layer: a versatile nanostructured platform for biomedical applications. Materials Chemistry Frontiers, 2018, 2, 2175-2190.	3.2	36
28	Fabrication of Supramolecular Bioactive Surfaces via β-Cyclodextrin-Based Host–Guest Interactions. ACS Applied Materials & Interfaces, 2018, 10, 36585-36601.	4.0	58
29	Regenerable smart antibacterial surfaces: full removal of killed bacteria <i>via</i> a sequential degradable layer. Journal of Materials Chemistry B, 2018, 6, 3946-3955.	2.9	71
30	Controlled synthesis of diverse single-chain polymeric nanoparticles using polymers bearing furan-protected maleimide moieties. Polymer Chemistry, 2018, 9, 3238-3247.	1.9	17
31	Self-assembled proteinaceous wound dressings attenuate secondary trauma and improve wound healing <i>in vivo</i> . Journal of Materials Chemistry B, 2018, 6, 4645-4655.	2.9	57
32	Using porous magnetic iron oxide nanomaterials as a facile photoporation nanoplatform for macromolecular delivery. Journal of Materials Chemistry B, 2018, 6, 4427-4436.	2.9	29
33	A hemocompatible polyurethane surface having dual fibrinolytic and nitric oxide generating functions. Journal of Materials Chemistry B, 2017, 5, 980-987.	2.9	16
34	Supramolecular Platform with Switchable Multivalent Affinity: Photo-Reversible Capture and Release of Bacteria. ACS Applied Materials & amp; Interfaces, 2017, 9, 3505-3513.	4.0	70
35	Promoting neural differentiation of embryonic stem cells using β-cyclodextrin sulfonate. Journal of Materials Chemistry B, 2017, 5, 1896-1900.	2.9	16
36	A supramolecular bioactive surface for specific binding of protein. Colloids and Surfaces B: Biointerfaces, 2017, 152, 192-198.	2.5	12

Qian Yu

#	Article	IF	CITATIONS
37	Intracellular Delivery Platform for "Recalcitrant―Cells: When Polymeric Carrier Marries Photoporation. ACS Applied Materials & Interfaces, 2017, 9, 21593-21598.	4.0	22
38	Dynamic furan/maleimide bond-incorporated cyclic polymer for topology transformation. Reactive and Functional Polymers, 2017, 116, 41-48.	2.0	11
39	A reusable supramolecular platform for the specific capture and release of proteins and bacteria. Journal of Materials Chemistry B, 2017, 5, 444-453.	2.9	47
40	Polyimide/cellulose acetate core/shell electrospun fibrous membranes for oil-water separation. Separation and Purification Technology, 2017, 177, 71-85.	3.9	147
41	A multifunctional surface for blood contact with fibrinolytic activity, ability to promote endothelial cell adhesion and inhibit smooth muscle cell adhesion. Journal of Materials Chemistry B, 2017, 5, 604-611.	2.9	20
42	Smart Antibacterial Surfaces with Switchable Bacteria-Killing and Bacteria-Releasing Capabilities. ACS Applied Materials & Interfaces, 2017, 9, 37511-37523.	4.0	308
43	Effects of polymer topology on biointeractions of polymer brushes: Comparison of cyclic and linear polymers. Colloids and Surfaces B: Biointerfaces, 2017, 159, 527-532.	2.5	13
44	Smart Biointerface with Photoswitched Functions between Bactericidal Activity and Bacteria-Releasing Ability. ACS Applied Materials & Interfaces, 2017, 9, 25767-25774.	4.0	120
45	A Universal Platform for Macromolecular Deliveryinto Cells Using Gold Nanoparticle Layers via the Photoporation Effect. Advanced Functional Materials, 2016, 26, 5787-5795.	7.8	55
46	Reusable nanoengineered surfaces for bacterial recruitment and decontamination. Biointerphases, 2016, 11, 019003.	0.6	20
47	An antithrombotic hydrogel with thrombin-responsive fibrinolytic activity: breaking down the clot as it forms. Materials Horizons, 2016, 3, 556-562.	6.4	34
48	Shape-memory and self-healing polyurethanes based on cyclic poly(Îμ-caprolactone). Polymer Chemistry, 2016, 7, 6789-6797.	1.9	53
49	A Universal and Versatile Approach for Surface Biofunctionalization: Layerâ€byâ€Layer Assembly Meets Host–Guest Chemistry. Advanced Materials Interfaces, 2016, 3, 1600600.	1.9	43
50	Photoporation: A Universal Platform for Macromolecular Deliveryinto Cells Using Gold Nanoparticle Layers via the Photoporation Effect (Adv. Funct. Mater. 32/2016). Advanced Functional Materials, 2016, 26, 5770-5770.	7.8	2
51	Interactions of Biomaterial Surfaces with Proteins and Cells. , 2016, , 103-121.		0
52	Multifunctional and Regenerable Antibacterial Surfaces Fabricated by a Universal Strategy. ACS Applied Materials & Interfaces, 2016, 8, 30048-30057.	4.0	114
53	A Smart Antibacterial Surface for the Onâ€Đemand Killing and Releasing of Bacteria. Advanced Healthcare Materials, 2016, 5, 449-456.	3.9	128
54	Nanopatterned polymer brushes: conformation, fabrication and applications. Nanoscale, 2016, 8, 680-700.	2.8	63

#	Article	IF	CITATIONS
55	Bioinspired Blood Compatible Surface Having Combined Fibrinolytic and Vascular Endotheliumâ€Like Properties via a Sequential Coimmobilization Strategy. Advanced Functional Materials, 2015, 25, 5206-5213.	7.8	53
56	Regulation of Protein Binding Capability of Surfaces via Host–Guest Interactions: Effects of Localized and Average Ligand Density. Langmuir, 2015, 31, 6172-6178.	1.6	23
57	Reversible Bacterial Adhesion on Mixed Poly(dimethylaminoethyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50	662 Td (m 1.6	iethacrylate)/ 24
58	Dual-function antibacterial surfaces for biomedical applications. Acta Biomaterialia, 2015, 16, 1-13.	4.1	354
59	Antimicrobial and bacteria-releasing multifunctional surfaces: Oligo (p-phenylene-ethynylene)/poly (N-isopropylacrylamide) films deposited by RIR-MAPLE. Colloids and Surfaces B: Biointerfaces, 2015, 126, 328-334.	2.5	41
60	A new avenue to the synthesis of GAG-mimicking polymers highly promoting neural differentiation of embryonic stem cells. Chemical Communications, 2015, 51, 15434-15437.	2.2	45
61	Modification of Silicone Elastomer Surfaces with Zwitterionic Polymers: Short-Term Fouling Resistance and Triggered Biofouling Release. ACS Applied Materials & Interfaces, 2015, 7, 25586-25591.	4.0	63
62	Nanopatterned Polymer Brushes for Triggered Detachment of Anchorageâ€Dependent Cells. Advanced Functional Materials, 2014, 24, 3751-3759.	7.8	45
63	Vertical SiNWAs for biomedical and biotechnology applications. Journal of Materials Chemistry B, 2014, 2, 7849-7860.	2.9	35
64	Antimicrobial oligo(p-phenylene-ethynylene) film deposited by resonant infrared matrix-assisted pulsed laser evaporation. Colloids and Surfaces B: Biointerfaces, 2014, 116, 786-792.	2.5	28
65	Nanopatterned antimicrobial enzymatic surfaces combining biocidal and fouling release properties. Nanoscale, 2014, 6, 4750-4757.	2.8	98
66	RIR-MAPLE deposition of multifunctional films combining biocidal and fouling release properties. Journal of Materials Chemistry B, 2014, 2, 4371-4378.	2.9	50
67	Nanopatterned Smart Polymer Surfaces for Controlled Attachment, Killing, and Release of Bacteria. ACS Applied Materials & Interfaces, 2013, 5, 9295-9304.	4.0	225
68	Nanopatterned polymer brushes as switchable bioactive interfaces. Nanoscale, 2013, 5, 3632.	2.8	37
69	"Nano-catalyst―for DNA transformation. Journal of Materials Chemistry, 2011, 21, 6148.	6.7	19
70	The synergistic effects of stimuli-responsive polymers with nano- structured surfaces: wettability and protein adsorption. RSC Advances, 2011, 1, 262.	1.7	31
71	High antibacterial efficiency of pDMAEMA modified silicon nanowire arrays. Colloids and Surfaces B: Biointerfaces, 2011, 83, 355-359.	2.5	67
72	Surface Modification to Control Protein/Surface Interactions. Macromolecular Bioscience, 2011, 11, 1031-1040.	2.1	73

QIAN YU

Qian Yu

#	Article	IF	CITATIONS
73	Inhibition of protein adsorption and cell adhesion on PNIPAAm-grafted polyurethane surface: Effect of graft molecular weight. Colloids and Surfaces B: Biointerfaces, 2011, 85, 26-31.	2.5	40
74	Anti-fouling bioactive surfaces. Acta Biomaterialia, 2011, 7, 1550-1557.	4.1	280
75	INTERACTION BETWEEN PNIPAAM MODIFIED SILICON SURFACES AND PLASMA PROTEINS. Acta Polymerica Sinica, 2011, 011, 537-542.	0.0	2
76	PREPARATION OF BIOACTIVE SURFACES FOR PROMOTING CELL ADHESION. Acta Polymerica Sinica, 2011, 011, 622-627.	0.0	1
77	REGULATION OF PROTEIN ADSORPTION ON pH-RESPONSIVE SURFACES. Acta Polymerica Sinica, 2011, 011, 812-816.	0.0	3
78	Protein adsorption on poly(N-isopropylacrylamide)-modified silicon surfaces: Effects of grafted layer thickness and protein size. Colloids and Surfaces B: Biointerfaces, 2010, 76, 468-474.	2.5	91
79	A surface decorated with diblock copolymer for biomolecular conjugation. Soft Matter, 2010, 6, 2616.	1.2	28
80	pH-Reversible, High-Capacity Binding of Proteins on a Substrate with Nanostructure. Langmuir, 2010, 26, 17812-17815.	1.6	35
81	Protein Adsorption and Cell Adhesion/Detachment Behavior on Dual-Responsive Silicon Surfaces Modified with Poly(<i>N</i> -isopropylacrylamide)- <i>block</i> -polystyrene Copolymer. Langmuir, 2010, 26, 8582-8588.	1.6	108
82	Regulation of protein adsorption and cell adhesion on surfaces modified by block copolymer brushes. Chinese Science Bulletin, 2010, 55, 2808-2814.	0.4	2
83	A Facile Approach to Modify Polyurethane Surfaces for Biomaterial Applications. Macromolecular Bioscience, 2009, 9, 1165-1168.	2.1	51