Mahmud Tokur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8910379/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A parametric study on encapsulation of elemental sulfur inside CNTs by sonically assisted capillary method: Cathodic material for rechargeable Li–S batteries. Microporous and Mesoporous Materials, 2022, 340, 112033.	4.4	6
2	Stress Bearing Mechanism of Reduced Graphene Oxide in Silicon-Based Composite Anodes for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 33855-33869.	8.0	23
3	Shoring Up the Lithium Ion Batteries with Multi-Component Silicon Yolk-Shell Anodes for Grid-Scale Storage Systems: Experimental and Computational Mechanical Studies. Journal of the Electrochemical Society, 2017, 164, A2238-A2250.	2.9	17
4	Electrochemical performance of Al–Ni/MWCNTs nanocomposite anode for Li-ion batteries: the effect of MWCNT amount. Journal of Applied Electrochemistry, 2016, 46, 735-743.	2.9	5
5	Closing to Scaling-Up High Reversible Si/rGO Nanocomposite Anodes for Lithium Ion Batteries. Electrochimica Acta, 2016, 216, 312-319.	5.2	26
6	Three-dimensional Sn rich Cu6Sn5 negative electrodes for Li ion batteries. International Journal of Hydrogen Energy, 2016, 41, 9819-9827.	7.1	25
7	Synthesis of flexible pure graphene papers and utilization as free standing cathodes for lithium-air batteries. International Journal of Hydrogen Energy, 2016, 41, 9796-9802.	7.1	20
8	High capacity Graphene(α-MnO2 nanocomposite cathodes for Li–O2 batteries. International Journal of Hydrogen Energy, 2016, 41, 9746-9754.	7.1	31
9	Free standing flexible graphene oxide + α-MnO2 composite cathodes for Li–Air batteries. Solid State Ionics, 2016, 286, 34-39.	2.7	39
10	Stability effect of polymer-based additives on EMITFSI-LiTFSI electrolyte in lithium-air battery. Solid State Ionics, 2016, 286, 51-56.	2.7	12
11	Graphene supported α-MnO2 nanocomposite cathodes for lithium ion batteries. International Journal of Hydrogen Energy, 2016, 41, 6945-6953.	7.1	30
12	Structural and sliding wear properties of Ag/Graphene/WC hybrid nanocomposites produced by electroless co-deposition. Journal of Alloys and Compounds, 2016, 654, 185-195.	5.5	48
13	p-type LiCr0.33V0.33Mn0.33O2 semiconductor as a cathode electrode for high rate Li-ion batteries. Materials Science in Semiconductor Processing, 2015, 38, 387-391.	4.0	3
14	Co-deposition of Cu/WC/graphene hybrid nanocomposites produced by electrophoretic deposition. Surface and Coatings Technology, 2015, 284, 344-352.	4.8	30