Courtney Schumacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8910355/publications.pdf

Version: 2024-02-01

72 papers

3,778 citations

33 h-index 60 g-index

80 all docs 80 docs citations

80 times ranked 3797 citing authors

#	Article	IF	CITATIONS
1	Longâ€term singleâ€column model intercomparison of diurnal cycle of precipitation over midlatitude and tropical land. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 641-669.	2.7	6
2	Assessing the Vertical Velocity of the East Pacific ITCZ. Geophysical Research Letters, 2022, 49, .	4.0	3
3	Topographic Influences on Diurnally Driven MJO Rainfall Over the Maritime Continent. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	6
4	Evaluating the Relationship Between Lightning and the Largeâ€Scale Environment and its Use for Lightning Prediction in Global Climate Models. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033990.	3.3	7
5	Interpreting the Diurnal Cycle of Clouds and Precipitation in the ARM GoAmazon Observations: Shallow to Deep Convection Transition. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033766.	3.3	13
6	Formation of Nocturnal Offshore Rainfall near the West Coast of Sumatra: Land Breeze or Gravity Wave?. Monthly Weather Review, 2021, 149, 715-731.	1.4	15
7	Amazonian mesoscale convective systems: Life cycle and propagation characteristics. International Journal of Climatology, 2021, 41, 3968-3981.	3.5	15
8	Abrupt Southern Great Plains thunderstorm shifts linked to glacial climate variability. Nature Geoscience, 2021, 14, 396-401.	12.9	13
9	Easterly Waves in the East Pacific during the OTREC 2019 Field Campaign. Journals of the Atmospheric Sciences, 2021, 78, 4071-4088.	1.7	4
10	Adapting the COSP Radar Simulator to Compare GCM Output and GPM Precipitation Radar Observations. Journal of Atmospheric and Oceanic Technology, 2021, 38, 1457-1475.	1.3	1
11	The Interaction between the Nocturnal Amazonian Low-Level Jet and Convection in CESM. Journal of Climate, 2021, 34, 8519-8532.	3.2	1
12	Representations of Precipitation Diurnal Cycle in the Amazon as Simulated by Observationally Constrained Cloudâ€System Resolving and Global Climate Models. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002586.	3.8	7
13	Statistical and machine learning methods applied to the prediction of different tropical rainfall types. Environmental Research Communications, 2021, 3, 111001.	2.3	2
14	Impact of Cloud Longwave Scattering on Radiative Fluxes Associated With the Maddenâ€Julian Oscillation in the Indian Ocean and Maritime Continent. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032591.	3.3	6
15	Drop-Size Distribution Variations Associated with Different Storm Types in Southeast Texas. Atmosphere, 2020, 11, 8.	2.3	8
16	The Amazonian Low-Level Jet and Its Connection to Convective Cloud Propagation and Evolution. Monthly Weather Review, 2020, 148, 4083-4099.	1.4	16
17	Eastward-Propagating Disturbances in the Tropical Pacific. Monthly Weather Review, 2020, 148, 3713-3728.	1.4	8
18	Global multivariate point pattern models for rain type occurrence. Spatial Statistics, 2019, 31, 100355.	1.9	3

#	Article	IF	CITATIONS
19	Predictive Statistical Representations of Observed and Simulated Rainfall Using Generalized Linear Models. Journal of Climate, 2019, 32, 3409-3427.	3.2	6
20	Spectral Signatures of Moisture–Convection Feedbacks over the Indian Ocean. Journals of the Atmospheric Sciences, 2018, 75, 1995-2015.	1.7	8
21	Using Lomb–Scargle Analysis to Derive Empirical Orthogonal Functions from Gappy Meteorological Data. Journal of Applied Meteorology and Climatology, 2018, 57, 2217-2229.	1.5	1
22	Overview: Precipitation characteristics and sensitivities to environmental conditions during GoAmazon2014/5 and ACRIDICON-CHUVA. Atmospheric Chemistry and Physics, 2018, 18, 6461-6482.	4.9	34
23	Global energetics and local physics as drivers of past, present and future monsoons. Nature Geoscience, 2018, 11, 392-400.	12.9	100
24	Urban influence on the concentration and composition of submicron particulate matter in central Amazonia. Atmospheric Chemistry and Physics, 2018, 18, 12185-12206.	4.9	30
25	Geographical differences in the tropical precipitationâ€moisture relationship and rain intensity onset. Geophysical Research Letters, 2017, 44, 1114-1122.	4.0	30
26	Review of Tropicalâ€Extratropical Teleconnections on Intraseasonal Time Scales. Reviews of Geophysics, 2017, 55, 902-937.	23.0	227
27	The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest. Bulletin of the American Meteorological Society, 2017, 98, 981-997.	3.3	128
28	Cloud characteristics, thermodynamic controls and radiative impacts during the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment. Atmospheric Chemistry and Physics, 2017, 17, 14519-14541.	4.9	38
29	Convective cloud vertical velocity and massâ€flux characteristics from radar wind profiler observations during GoAmazon2014/5. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,891.	3.3	51
30	Linking Meteorology, Turbulence, and Air Chemistry in the Amazon Rain Forest. Bulletin of the American Meteorological Society, 2016, 97, 2329-2342.	3.3	59
31	Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5). Atmospheric Chemistry and Physics, 2016, 16, 4785-4797.	4.9	213
32	Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment. Atmospheric Chemistry and Physics, 2016, 16, 14249-14264.	4.9	44
33	Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nature Geoscience, 2016, 9, 624-629.	12.9	217
34	A Retrieval of Tropical Latent Heating Using the 3D Structure of Precipitation Features. Journal of Applied Meteorology and Climatology, 2016, 55, 1965-1982.	1.5	13
35	A Revised Real-Time Multivariate MJO Index. Monthly Weather Review, 2016, 144, 627-642.	1.4	42
36	Downward transport of ozone rich air and implications for atmospheric chemistry in the Amazon rainforest. Atmospheric Environment, 2016, 124, 64-76.	4.1	48

#	Article	IF	Citations
37	Vertical motions of the tropical convective cloud spectrum over Darwin, Australia. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 2277-2288.	2.7	23
38	Convective and stratiform components of the precipitationâ€moisture relationship. Geophysical Research Letters, 2015, 42, 10,453.	4.0	79
39	Evolution, Properties, and Spatial Variability of MJO Convection near and off the Equator during DYNAMO. Journals of the Atmospheric Sciences, 2015, 72, 4126-4147.	1.7	24
40	Constructing a Merged Cloud–Precipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll. Journal of Atmospheric and Oceanic Technology, 2014, 31, 1021-1042.	1.3	53
41	Assessing the Applicability of the Tropical Convective–Stratiform Paradigm in the Extratropics Using Radar Divergence Profiles. Journal of Climate, 2014, 27, 6673-6686.	3.2	5
42	The role of tilted heating in the evolution of the MJO. Journal of Geophysical Research D: Atmospheres, 2014, 119, 2966-2989.	3.3	26
43	Radar observations of MJO and Kelvin wave interactions during DYNAMO/CINDY2011/AMIE. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6347-6367.	3.3	21
44	Total Heating Characteristics of the ISCCP Tropical and Subtropical Cloud Regimes. Journal of Climate, 2013, 26, 7097-7116.	3.2	21
45	Radiative heating of the ISCCP upper level cloud regimes and its impact on the largeâ€scale tropical circulation. Journal of Geophysical Research D: Atmospheres, 2013, 118, 592-604.	3.3	13
46	Analysis of Rain Classifications over the Tropics by Version 7 of the TRMM PR 2A23 Algorithm. Journal of the Meteorological Society of Japan, 2013, 91, 257-272.	1.8	44
47	The Relationship between Tropical Warm Pool Precipitation, Sea Surface Temperature, and Large-Scale Vertical Motion in IPCC AR4 Models. Journals of the Atmospheric Sciences, 2012, 69, 185-194.	1.7	14
48	Modeled and Observed Variations in Storm Divergence and Stratiform Rain Production in Southeastern Texas. Journals of the Atmospheric Sciences, 2012, 69, 1159-1181.	1.7	10
49	A comparison of TWPâ€ICE observational data with cloudâ€resolving model results. Journal of Geophysical Research, 2012, 117, .	3.3	108
50	Heating in the tropical atmosphere: what level of detail is critical for accurate MJO simulations in GCMs?. Climate Dynamics, 2012, 39, 2547-2568.	3.8	37
51	TWPâ€ICE global atmospheric model intercomparison: Convection responsiveness and resolution impact. Journal of Geophysical Research, 2012, 117, .	3.3	38
52	Radar Nowcasting of Total Lightning over the Kennedy Space Center. Weather and Forecasting, 2012, 27, 189-204.	1.4	29
53	A comparison of the Hadley circulation in modern reanalyses. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	115
54	Top-of-atmosphere radiation budget of convective core/stratiform rain and anvil clouds from deep convective systems. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	56

#	Article	IF	Citations
55	The Caribbean Low-Level Jet and Its Relationship with Precipitation in IPCC AR4 Models. Journal of Climate, 2011, 24, 5935-5950.	3.2	49
56	Radar Nowcasting of Cloud-to-Ground Lightning over Houston, Texas. Weather and Forecasting, 2011, 26, 199-212.	1.4	56
57	Modulation of Caribbean Precipitation by the Madden–Julian Oscillation. Journal of Climate, 2011, 24, 813-824.	3.2	54
58	Thick Anvils as Viewed by the TRMM Precipitation Radar. Journal of Climate, 2011, 24, 1718-1735.	3.2	36
59	Baroclinicity Influences on Storm Divergence and Stratiform Rain: Subtropical Upper-Level Disturbances. Monthly Weather Review, 2009, 137, 1338-1357.	1.4	6
60	Five-Year Climatology of Midtroposphere Dry Air Layers in Warm Tropical Ocean Regions as Viewed by AIRS/Aqua. Journal of Applied Meteorology and Climatology, 2009, 48, 1831-1842.	1.5	15
61	Radar reflectivity as a proxy for convective mass transport. Journal of Geophysical Research, 2009, 114, .	3.3	21
62	Precipitation and Latent Heating Characteristics of the Major Tropical Western Pacific Cloud Regimes. Journal of Climate, 2008, 21, 4348-4364.	3. 2	51
63	Tropical Cloud Heating Profiles: Analysis from KWAJEX. Monthly Weather Review, 2008, 136, 4289-4300.	1.4	42
64	Anvil Characteristics as Seen by C-POL during the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Monthly Weather Review, 2008, 136, 206-222.	1.4	35
65	Heating Structures of the TRMM Field Campaigns. Journals of the Atmospheric Sciences, 2007, 64, 2593-2610.	1.7	96
66	Frequency of tropical precipitating clouds as observed by the Tropical Rainfall Measuring Mission Precipitation Radar and ICESat/Geoscience Laser Altimeter System. Journal of Geophysical Research, 2007, 112, .	3.3	16
67	Stratiform precipitation production over sub-Saharan Africa and the tropical East Atlantic as observed by TRMM. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 2235-2255.	2.7	107
68	Uncertainties in Oceanic Radar Rain Maps at Kwajalein and Implications for Satellite Validation. Journal of Applied Meteorology and Climatology, 2004, 43, 1114-1132.	1.7	59
69	The Tropical Dynamical Response to Latent Heating Estimates Derived from the TRMM Precipitation Radar. Journals of the Atmospheric Sciences, 2004, 61, 1341-1358.	1.7	326
70	Stratiform Rain in the Tropics as Seen by the TRMM Precipitation Radar*. Journal of Climate, 2003, 16, 1739-1756.	3.2	416
71	The TRMM Precipitation Radar's View of Shallow, Isolated Rain. Journal of Applied Meteorology and Climatology, 2003, 42, 1519-1524.	1.7	125
72	Comparison of Radar Data from the TRMM Satellite and Kwajalein Oceanic Validation Site. Journal of Applied Meteorology and Climatology, 2000, 39, 2151-2164.	1.7	129