Laurent Gautron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8908985/publications.pdf

Version: 2024-02-01

69 papers 5,761 citations

34 h-index 64 g-index

78 all docs

78 docs citations

78 times ranked 8719 citing authors

#	Article	IF	CITATIONS
1	The controversial role of the vagus nerve in mediating ghrelin's actions: gut feelings and beyond. IBRO Neuroscience Reports, 2022, 12, 228-239.	1.6	9
2	Characterization of a cell bridge variant connecting the nodose and superior cervical ganglia in the mouse: Prevalence, anatomical features, and practical implications. Journal of Comparative Neurology, 2021, 529, 111-128.	1.6	9
3	The Phantom Satiation Hypothesis of Bariatric Surgery. Frontiers in Neuroscience, 2021, 15, 626085.	2.8	5
4	Adipocyte iron levels impinge on a fat-gut crosstalk to regulate intestinal lipid absorption and mediate protection from obesity. Cell Metabolism, 2021, 33, 1624-1639.e9.	16.2	50
5	Detection of G Protein-coupled Receptor Expression in Mouse Vagal Afferent Neurons using Multiplex ln Situ Hybridization. Journal of Visualized Experiments, 2021, , .	0.3	3
6	TLR4 Signaling Selectively and Directly Promotes CGRP Release from Vagal Afferents in the Mouse. ENeuro, 2021, 8, ENEURO.0254-20.2020.	1.9	22
7	Vagal neuron expression of the microbiota-derived metabolite receptor, free fatty acid receptor (FFAR3), is necessary for normal feeding behavior. Molecular Metabolism, 2021, 54, 101350.	6.5	34
8	The parasympathetic innervation of the spleen: are we chasing a ghost?. Journal of Anatomy, 2021, , .	1.5	O
9	Forward genetic analysis using OCT screening identifies <i>Sfxn3</i> mutations leading to progressive outer retinal degeneration in mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12931-12942.	7.1	11
10	Physiology-forward identification of bile acid–sensitive vomeronasal receptors. Science Advances, 2020, 6, eaaz6868.	10.3	11
11	Mycobacterium tuberculosis Sulfolipid-1 Activates Nociceptive Neurons and Induces Cough. Cell, 2020, 181, 293-305.e11.	28.9	88
12	The Molecular Diversity of Vagal Afferents Revealed. Trends in Neurosciences, 2019, 42, 663-666.	8.6	5
13	Seeing through sensory ganglia. Journal of Neuroscience Research, 2019, 97, 1041-1042.	2.9	0
14	Identification of Leptin Receptor–Expressing Cells in the Nodose Ganglion of Male Mice. Endocrinology, 2019, 160, 1307-1322.	2.8	4
15	Relationship of $\hat{l}\pm$ -MSH and AgRP axons to the perikarya of melanocortin-4 receptor neurons. Brain Research, 2019, 1717, 136-146.	2.2	10
16	On the Necessity of Validating Antibodies in the Immunohistochemistry Literature. Frontiers in Neuroanatomy, 2019, 13, 46.	1.7	15
17	Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice. Journal of Clinical Investigation, 2019, 129, 5327-5342.	8.2	112
18	The Role of Vagal Free Fatty Acid Receptor 3 (FFAR3) in FMT Improvement of Glucose Homeostasis. FASEB Journal, 2019, 33, lb626.	0.5	0

#	Article	IF	CITATIONS
19	Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms. Molecular Metabolism, 2018, 12, 62-75.	6.5	124
20	Leptin and brain–adipose crosstalks. Nature Reviews Neuroscience, 2018, 19, 153-165.	10.2	182
21	Liver X Receptors Protect Dorsal Root Ganglia from Obesity-Induced Endoplasmic Reticulum Stress and Mechanical Allodynia. Cell Reports, 2018, 25, 271-277.e4.	6.4	43
22	Large-scale forward genetics screening identifies Trpa1 as a chemosensor for predator odor-evoked innate fear behaviors. Nature Communications, 2018, 9, 2041.	12.8	71
23	Leptin Receptor Expression in Mouse Intracranial Perivascular Cells. Frontiers in Neuroanatomy, 2018, 12, 4.	1.7	25
24	Hepatocyte toll-like receptor 4 deficiency protects against alcohol-induced fatty liver disease. Molecular Metabolism, 2018, 14, 121-129.	6.5	35
25	Na v 1.8 neurons are involved in limiting acute phase responses to dietary fat. Molecular Metabolism, $2017, 6, 1081-1091$.	6.5	16
26	The role of ghrelin-responsive mediobasal hypothalamic neurons in mediating feeding responses to fasting. Molecular Metabolism, 2017, 6, 882-896.	6.5	46
27	Lipopolysacharide Rapidly and Completely Suppresses AgRP Neuron-Mediated Food Intake in Male Mice. Endocrinology, 2016, 157, 2380-2392.	2.8	23
28	Levels of Cocaine- and Amphetamine-Regulated Transcript in Vagal Afferents in the Mouse Are Unaltered in Response to Metabolic Challenges. ENeuro, 2016, 3, ENEURO.0174-16.2016.	1.9	10
29	Neuroanatomy and transgenic technologies. Frontiers in Neuroanatomy, 2015, 8, 157.	1.7	0
30	PPAR \hat{I}^3 mRNA in the adult mouse hypothalamus: distribution and regulation in response to dietary challenges. Frontiers in Neuroanatomy, 2015, 9, 120.	1.7	12
31	Toward a Neuroimmunoendocrinology of Adipose Tissue. Endocrinology, 2015, 156, 3485-3487.	2.8	8
32	Neural Control of Energy Balance: Translating Circuits to Therapies. Cell, 2015, 161, 133-145.	28.9	204
33	Loss of the liver X receptor LXRÎ \pm /Î 2 in peripheral sensory neurons modifies energy expenditure. ELife, 2015, 4, .	6.0	21
34	PPAR \hat{I}^3 in Vagal Neurons Regulates High-Fat Diet Induced Thermogenesis. Cell Metabolism, 2014, 19, 722-730.	16.2	55
35	FGF21 contributes to neuroendocrine control of female reproduction. Nature Medicine, 2013, 19, 1153-1156.	30.7	193
36	FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nature Medicine, 2013, 19, 1147-1152.	30.7	430

#	Article	IF	CITATIONS
37	Discrete melanocortin-sensitive neuroanatomical pathway linking the ventral premmamillary nucleus to the paraventricular hypothalamus. Neuroscience, 2013, 240, 70-82.	2.3	13
38	Vagal innervation patterns following Roux-en-Y gastric bypass in the mouse. International Journal of Obesity, 2013, 37, 1603-1607.	3.4	39
39	Neuronal and nonneuronal cholinergic structures in the mouse gastrointestinal tract and spleen. Journal of Comparative Neurology, 2013, 521, 3741-3767.	1.6	115
40	Molecular anatomy of the gut-brain axis revealed with transgenic technologies: implications in metabolic research. Frontiers in Neuroscience, 2013, 7, 134.	2.8	35
41	Neuroanatomy of melanocortinâ€4 receptor pathway in the lateral hypothalamic area. Journal of Comparative Neurology, 2012, 520, 4168-4183.	1.6	70
42	A Cardiac MicroRNA Governs Systemic Energy Homeostasis by Regulation of MED13. Cell, 2012, 149, 671-683.	28.9	334
43	Laserâ€capture microdissection and transcriptional profiling of the dorsomedial nucleus of the hypothalamus. Journal of Comparative Neurology, 2012, 520, 3617-3632.	1.6	23
44	Melanocortinâ€4 receptor expression in different classes of spinal and vagal primary afferent neurons in the mouse. Journal of Comparative Neurology, 2012, 520, 3933-3948.	1.6	20
45	Hindbrain Ghrelin Receptor Signaling Is Sufficient to Maintain Fasting Glucose. PLoS ONE, 2012, 7, e44089.	2.5	52
46	Induction of Leptin Resistance by Activation of cAMP-Epac Signaling. Cell Metabolism, 2011, 13, 331-339.	16.2	65
47	Characterization of Kiss1 neurons using transgenic mouse models. Neuroscience, 2011, 173, 37-56.	2.3	286
48	Leptin's effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons. Journal of Clinical Investigation, 2011, 121, 355-368.	8.2	281
49	Genetic tracing of Nav1.8â€expressing vagal afferents in the mouse. Journal of Comparative Neurology, 2011, 519, 3085-3101.	1.6	100
50	Sixteen years and counting: an update on leptin in energy balance. Journal of Clinical Investigation, 2011, 121, 2087-2093.	8.2	292
51	Melanocortinâ€4 receptor expression in a vagoâ€vagal circuitry involved in postprandial functions. Journal of Comparative Neurology, 2010, 518, 6-24.	1.6	64
52	Melanocortin-4 receptor expression in a vago-vagal circuitry involved in postprandial functions. Journal of Comparative Neurology, 2010, 518, spc1-spc1.	1.6	0
53	Identifying the efferent projections of leptinâ€responsive neurons in the dorsomedial hypothalamus using a novel conditional tracing approach. Journal of Comparative Neurology, 2010, 518, 2090-2108.	1.6	75
54	Loss of <i>Goosecoid-like</i> and <idigeorge 14<="" critical="" i="" region="" syndrome=""> in interpeduncular nucleus results in altered regulation of rapid eye movement sleep. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18155-18160.</idigeorge>	7.1	27

#	Article	IF	Citations
55	Postnatal <i>Sim1</i> Deficiency Causes Hyperphagic Obesity and Reduced <i>Mc4r</i> and <i>Oxytocin</i> Expression. Journal of Neuroscience, 2010, 30, 3803-3812.	3.6	120
56	PI3K Signaling in the Ventromedial Hypothalamic Nucleus Is Required for Normal Energy Homeostasis. Cell Metabolism, 2010, 12, 88-95.	16.2	96
57	Neurobiology of inflammation-associated anorexia. Frontiers in Neuroscience, 2009, 3, 59.	2.8	38
58	Age-Related Changes in Nestin Immunoreactivity in the Rat Pituitary Gland. Neuroendocrinology, 2009, 90, 19-30.	2.5	6
59	Central Administration of Resveratrol Improves Diet-Induced Diabetes. Endocrinology, 2009, 150, 5326-5333.	2.8	118
60	Central Administration of Resveratrol Improves Diet-Induced Diabetes. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 4625-4625.	3.6	0
61	PANIC-ATTAC: A Mouse Model for Inducible and Reversible β-Cell Ablation. Diabetes, 2008, 57, 2137-2148.	0.6	59
62	Monitoring FoxO1 Localization in Chemically Identified Neurons. Journal of Neuroscience, 2008, 28, 13640-13648.	3.6	64
63	Endocrine Regulation of the Fasting Response by PPARα-Mediated Induction of Fibroblast Growth Factor 21. Cell Metabolism, 2007, 5, 415-425.	16.2	1,306
64	Pituitary Cocaine―and Amphetamineâ€Regulated Transcript Expression Depends on the Strain, Sex and Oestrous Cycle in the Rat. Journal of Neuroendocrinology, 2006, 18, 426-433.	2.6	8
65	Characterization of STAT3-expressing cells in the postnatal rat brain. Brain Research, 2006, 1098, 26-32.	2.2	21
66	Influence of feeding status on neuronal activity in the hypothalamus during lipopolysaccharide-induced anorexia in rats. Neuroscience, 2005, 134, 933-946.	2.3	51
67	Specific localization of signal transducer and activator of transcription 1 immunoreactivity in oxytocin neurons of the rat hypothalamus. Brain Research, 2003, 994, 260-264.	2.2	5
68	In vivo Activation of the Interleukin-6 Receptor/gp130 Signaling Pathway in Pituitary Corticotropes of Lipopolysaccharide-Treated Rats. Neuroendocrinology, 2003, 77, 32-43.	2.5	20
69	Spatiotemporal analysis of signal transducer and activator of transcription 3 activation in rat brain astrocytes and pituitary following peripheral immune challenge. Neuroscience, 2002, 112, 717-729.	2.3	69