Gheorghe Fundueanu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8908763/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physico-chemical characterization of Ca-alginate microparticles produced with different methods. Biomaterials, 1999, 20, 1427-1435.	11.4	265
2	Preparation and characterization of pH- and temperature-sensitive pullulan microspheres for controlled release of drugs. Biomaterials, 2008, 29, 2767-2775.	11.4	147
3	Poly(N-isopropylacrylamide-co-acrylamide) cross-linked thermoresponsive microspheres obtained from preformed polymers: Influence of the physico-chemical characteristics of drugs on their release profiles. Acta Biomaterialia, 2009, 5, 363-373.	8.3	94
4	Preparation and characterisation of poly(vinyl alcohol)/cyclodextrin microspheres as matrix for inclusion and separation of drugs. International Journal of Pharmaceutics, 2004, 285, 87-96.	5.2	68
5	Smart composite materials based on chitosan microspheres embedded in thermosensitive hydrogel for controlled delivery of drugs. Carbohydrate Polymers, 2017, 157, 493-502.	10.2	68
6	Preparation and characterization of starch/cyclodextrin bioadhesive microspheres as platform for nasal administration of Gabexate Mesylate (Foy®) in allergic rhinitis treatment. Biomaterials, 2004, 25, 159-170.	11.4	62
7	Cellulose acetate butyrate microcapsules containing dextran ion-exchange resins as self-propelled drug release system. Biomaterials, 2005, 26, 4337-4347.	11.4	57
8	Poly(N-isopropylacrylamide-co-methacrylic acid) pH/thermo-responsive porous hydrogels as self-regulated drug delivery system. European Journal of Pharmaceutical Sciences, 2014, 62, 86-95.	4.0	57
9	pH/thermo-responsive poly(N-isopropylacrylamide-co-maleic acid) hydrogel with a sensor and an actuator for biomedical applications. Polymer, 2017, 110, 177-186.	3.8	56
10	Thermo- and pH-sensitive interpenetrating poly(N-isopropylacrylamide)/carboxymethyl pullulan network for drug delivery. Journal of Polymer Research, 2013, 20, 1.	2.4	54
11	Poly(NIPAAm-co-β-cyclodextrin) microgels with drug hosting and temperature-dependent delivery properties. Reactive and Functional Polymers, 2014, 84, 1-9.	4.1	49
12	Pullulan–cyclodextrin microspheres. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 791, 407-419.	2.3	45
13	Poly(vinyl alcohol) microspheres with pH- and thermosensitive properties as temperature-controlled drug delivery. Acta Biomaterialia, 2010, 6, 3899-3907.	8.3	42
14	Smart nanoparticles based on pullulan-g-poly(N-isopropylacrylamide) for controlled delivery of indomethacin. International Journal of Biological Macromolecules, 2017, 94, 698-708.	7.5	41
15	pH- and temperature-sensitive polymeric microspheres for drug delivery: the dissolution of copolymers modulates drug release. Journal of Materials Science: Materials in Medicine, 2009, 20, 2465-2475.	3.6	38
	Preparation and Characterisation of Thermoresponsive		

#	Article	IF	CITATIONS
19	Cellulose acetate butyrate–pH/thermosensitive polymer microcapsules containing aminated poly(vinyl) Tj ETQq1	1 0.7843	14 rgBT /
	Biopharmaceutics, 2007, 66, 11-20.	4.3	28
20	Fast-responsive porous thermoresponsive microspheres for controlled delivery of macromolecules. International Journal of Pharmaceutics, 2009, 379, 9-17.	5.2	28
21	Synthesis and characterization of thermosensitive poly(N-isopropylacrylamide-co-hydroxyethylacrylamide) microgels as potential carriers for drug delivery. Journal of Polymer Research, 2014, 21, 1.	2.4	28
22	Poly(<i>N</i> â€isopropylacrylamideâ€ <i>co</i> â€ <i>N</i> â€isopropylmethacrylamide) Thermoâ€Responsive Microgels as Selfâ€Regulated Drug Delivery System. Macromolecular Chemistry and Physics, 2016, 217, 2525-2533.	2.2	25
23	An intelligent multicompartmental system based on thermo-sensitive starch microspheres for temperature-controlled release of drugs. Biomedical Microdevices, 2010, 12, 693-704.	2.8	19
24	Synthesis and Investigation of Double Stimuli-Responsive Behavior of <i>N</i> -Isopropylacrylamide and Maleic Acid Copolymer in Solutions. Journal of Macromolecular Science - Physics, 2015, 54, 1105-1121.	1.0	19
25	A new sponge-type hydrogel based on hyaluronic acid and poly(methylvinylether-alt-maleic acid) as a 3D platform for tumor cell growth. International Journal of Biological Macromolecules, 2020, 165, 2528-2540.	7.5	18
26	The thermosensitivity of pH/thermoresponsive microspheres activated by the electrostatic interaction of pHâ€sensitive units with a bioactive compound. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1661-1669.	4.0	14
27	Smart drug delivery system activated by specific biomolecules. Materials Science and Engineering C, 2020, 108, 110466.	7.3	14
28	Prediction of the appropriate size of drug molecules that could be released by a pulsatile mechanism from pH/thermoresponsive microspheres obtained from preformed polymers. Acta Biomaterialia, 2012, 8, 1281-1289.	8.3	12
29	Thermoresponsive properties of N-isopropylacrylamide with methacrylic acid copolymer in media of different acidity. Macromolecular Research, 2017, 25, 680-688.	2.4	10
30	Do cyclodextrins bound to dextran microspheres act as sustained delivery systems of drugs?. International Journal of Pharmaceutics, 2014, 469, 1-9.	5.2	8
31	Simple and dual cross-linked chitosan millicapsules as a particulate support for cell culture. International Journal of Biological Macromolecules, 2020, 143, 200-212.	7.5	8
32	Bio-Responsive Carriers for Controlled Delivery of Doxorubicin to Cancer Cells. Pharmaceutics, 2022, 14, 865.	4.5	8
33	Design of silica microparticles with oligopeptide brushes and their interaction with proteins. Colloid and Polymer Science, 2011, 289, 33-41.	2.1	7
34	Thermo- and pH-responsive phase separation of N-isopropylacrylamide with 4-vinylpyridine random copolymer in aqueous solutions. Colloid and Polymer Science, 2018, 296, 557-565.	2.1	6
35	Effect of comonomer ratio and ionic strength on the thermo-induced conformational changes in N-isopropylacrylamide based copolymers: An ATR-FTIR spectroscopic study. Vibrational Spectroscopy, 2012, 61, 133-143.	2.2	5
36	Composite materials based on poly(<i>N</i> -isopropylacrylamide- <i>co</i> -methacrylic acid) hydrogels and calcium carbonate. High Performance Polymers, 2015, 27, 516-525.	1.8	5

#	Article	IF	CITATIONS
37	Polymer engineering for drug/gene delivery: from simple towards complex architectures and hybrid materials. Pure and Applied Chemistry, 2014, 86, 1621-1635.	1.9	4
38	Double cross-linked pectin beads stable in physiological environment as potential support for biomedical applications. Journal of Polymer Research, 2021, 28, 1.	2.4	3
39	Comparative vibrational study of two N-isopropylacrylamide-based co-polymers: Influence of the polymer hydrophobicity on the phase transition. Vibrational Spectroscopy, 2012, 63, 311-324.	2.2	2
40	Thermo-Sensitivity of poly- <i>N</i> -isopropylacrylamide with Statistically Introduced D,L-Allylglycine Betainic Units. Journal of Macromolecular Science - Physics, 2020, 59, 100-120.	1.0	2
41	Intelligent micro-vehicles for drug transport and controlled release to cancer cells. Reactive and Functional Polymers, 2021, 165, 104961.	4.1	1
42	ATR-FTIR spectroscopic studies of thermally induced conformational changes of PNIPAAm copolymers in solution. , 2011, , .		0
43	Smart Polymeric Materials for Drug Delivery. , 2021, , 275-294.		0