Martha C Giraldo Zapata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8908599/publications.pdf

Version: 2024-02-01

		759233	1125743	
13	2,011	12	13	
papers	citations	h-index	g-index	
13	13	13	2210	
13	13	13	2210	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Growth and colonization of organic matter in soil by Fusarium proliferatum. Canadian Journal of Plant Pathology, 2019, 41, 242-250.	1.4	3
2	The Small GTPase MoSec4 Is Involved in Vegetative Development and Pathogenicity by Regulating the Extracellular Protein Secretion in Magnaporthe oryzae. Frontiers in Plant Science, 2016, 7, 1458.	3.6	24
3	Characterization and regulation of expression of an antifungal peptide from hemolymph of an insect, Manduca sexta. Developmental and Comparative Immunology, 2016, 61, 258-268.	2.3	30
4	pFPL Vectors for High-Throughput Protein Localization in Fungi: Detecting Cytoplasmic Accumulation of Putative Effector Proteins. Molecular Plant-Microbe Interactions, 2015, 28, 107-121.	2.6	26
5	Filamentous plant pathogen effectors in action. Nature Reviews Microbiology, 2013, 11, 800-814.	28.6	417
6	Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nature Communications, 2013, 4, 1996.	12.8	321
7	Gene-based SSR markers for common bean (Phaseolus vulgaris L.) derived from root and leaf tissue ESTs: an integration of the BMc series. BMC Plant Biology, 2011, 11, 50.	3.6	79
8	Translocation of <i>Magnaporthe oryzae </i> Effectors into Rice Cells and Their Subsequent Cell-to-Cell Movement A. Plant Cell, 2010, 22, 1388-1403.	6.6	426
9	Interaction Transcriptome Analysis Identifies <i>Magnaporthe oryzae</i> BAS1-4 as Biotrophy-Associated Secreted Proteins in Rice Blast Disease Â. Plant Cell, 2009, 21, 1273-1290.	6.6	346
10	Development and diversity of Andean-derived, gene-based microsatellites for common bean (Phaseolus) Tj ETQq	0 0 0 rgB1	Overlock 10
11	Development of microsatellite markers for common bean (Phaseolus vulgaris L.) based on screening of non-enriched, small-insert genomic libraries. Genome, 2009, 52, 772-782.	2.0	37
12	Characterization of AT-rich microsatellites in common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 2008, 118, 91-103.	3.6	39
13	Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 2006, 113, 100-109.	3.6	201