
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8908276/publications.pdf Version: 2024-02-01

<u>Å Å1⁄5≙ ÉTM^</u>

#	Article	IF	CITATIONS
1	Thermodynamic analysis and comparison of four insulation schemes for liquid hydrogen storage tank. Energy Conversion and Management, 2019, 186, 526-534.	9.2	62
2	Thermodynamic modelling and optimization of self-evaporation vapor cooled shield for liquid hydrogen storage tank. Energy Conversion and Management, 2019, 184, 74-82.	9.2	48
3	Experimental study on composite insulation system of spray on foam insulation and variable density multilayer insulation. Applied Thermal Engineering, 2018, 130, 161-168.	6.0	39
4	Study on a high frequency pulse tube cryocooler capable of achieving temperatures below 4â€ [–] K by helium-4. Cryogenics, 2018, 94, 103-109.	1.7	36
5	Numerical and experimental study on the characteristics of 4ÂK gas-coupled Stirling-type pulse tube cryocooler. International Journal of Refrigeration, 2018, 88, 204-210.	3.4	28
6	A novel insulation system based on active cooling without power input for liquid hydrogen storage. Energy, 2019, 182, 1-10.	8.8	28
7	386mW/20K single-stage Stirling-type pulse tube cryocooler. Cryogenics, 2013, 57, 195-199.	1.7	25
8	A high-efficiency liquid hydrogen storage system cooled by a fuel-cell-driven refrigerator for hydrogen combustion heat recovery. Energy Conversion and Management, 2020, 226, 113496.	9.2	25
9	Development of a high-frequency coaxial multi-bypass pulse tube refrigerator below 14K. Cryogenics, 2015, 67, 28-30.	1.7	23
10	An 80â€⁻mW/8â€⁻K high-frequency pulse tube refrigerator driven by only one linear compressor. Cryogenics, 2019, 101, 7-11.	1.7	20
11	Micro-plastic deformation behavior of Al-Zn-Mg-Cu alloy subjected to cryo-cycling treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 742, 672-679.	5.6	19
12	Thermodynamic optimization of composite insulation system with cold shield for liquid hydrogen zero-boil-off storage. Renewable Energy, 2020, 147, 824-832.	8.9	18
13	First stirling-type cryocooler reaching lambda point of 4He (2.17â€⁻K) and its prospect in Chinese HUBS satellite project. Science Bulletin, 2019, 64, 219-221.	9.0	14
14	Energy and exergy equilibrium analysis of Stirling-type thermal compressor (STC)—The core part in thermal-driven Vuilleumier machines. Energy Conversion and Management, 2019, 199, 111961.	9.2	13
15	Numerical and experimental study of VM type pulse tube cryocooler with multi-bypass operating below 4â∈ K. Cryogenics, 2019, 98, 71-79.	1.7	13
16	Thermodynamics and Economics of Different Asymmetric Cold Energy Transfer in a Liquid Air Energy Storage System. Energy Technology, 2020, 8, 1901487.	3.8	13
17	10K high frequency pulse tube cryocooler with precooling. Cryogenics, 2016, 77, 15-19.	1.7	12
18	Thermal analysis of Stirling thermocompressor and its prospect to drive refrigerator by using natural working fluid. Energy Conversion and Management, 2018, 177, 280-291.	9.2	12

Å...Å¹⁄2≜ É™^

#	Article	IF	CITATIONS
19	A novel cryogenic insulation system of hollow glass microspheres and self-evaporation vapor-cooled shield for liquid hydrogen storage. Frontiers in Energy, 2020, 14, 570-577.	2.3	12
20	Effects of Isochoric Freezing Conditions on Cut Potato Quality. Foods, 2021, 10, 974.	4.3	11
21	Coupling study of a novel thermocompressor driven pulse tube refrigerator. Applied Thermal Engineering, 2013, 51, 630-634.	6.0	10
22	Attaining the liquid helium temperature with a compact pulse tube cryocooler for space applications. Science China Technological Sciences, 2020, 63, 434-439.	4.0	10
23	A novel cryogenic condensation system based on heat-driven refrigerator without power input for volatile organic compounds recovery. Energy Conversion and Management, 2021, 238, 114157.	9.2	10
24	A Novel Composite Insulation System of Hollow Glass Microspheres and Multilayer Insulation with Selfâ€Evaporating Vapor Cooled Shield for Liquid Hydrogen Storage. Energy Technology, 2020, 8, 2000591.	3.8	8
25	Phase change interface stability during isochoric solidification of an aqueous solution. Applied Physics Letters, 2020, 117, .	3.3	8
26	Progress and Challenges of Sub-Kelvin Sorption Cooler and Its Prospects for Space Application. Journal of Low Temperature Physics, 2020, 199, 1363-1381.	1.4	8
27	Cryogenic thermal conductivity of 7050 aluminum alloy subjected to different heat treatments. Cryogenics, 2021, 116, 103305.	1.7	8
28	Thermal Conductivity of Open Cell Aluminum Foam and Its Application as Advanced Thermal Storage Unit at Low Temperature. Rare Metal Materials and Engineering, 2018, 47, 1049-1053.	0.8	7
29	Effect of cryogenic freezing combined with precooling on freezing rates and the quality of golden pomfret (<i>Trachinotus ovatus</i>). Journal of Food Process Engineering, 2019, 42, e13296.	2.9	7
30	The State of the Art: Lightweight Cryocoolers Working in the Liquid-Helium Temperature Range. Journal of Low Temperature Physics, 2022, 206, 321-359.	1.4	7
31	Study on a novel energy-saving cryogenic pre-treatment equipment for walnut kernel peeling. Food Control, 2021, 121, 107650.	5.5	5
32	An Optical Cryostat for Use in Microscopy Cooled by Stirling-Type Pulse Tube Cryocooler. Physics Procedia, 2015, 67, 354-359.	1.2	4
33	Study on the use of porous materials with adsorbed helium as the regenerator of cryocooler at temperatures below 10 K. Applied Physics Letters, 2021, 118, .	3.3	3
34	Measurement of apparent thermal conductivity of regenerator materials in 4–20ÂK temperature range. Cryogenics, 2021, 116, 103300.	1.7	3
35	A study of mK cooling system for space application. IOP Conference Series: Materials Science and Engineering, 2019, 502, 012063.	0.6	1
36	Development of an in-situ analysis instrument for microstructure of materials with low temperature. IOP Conference Series: Materials Science and Engineering, 2020, 756, 012021.	0.6	1

Å...Ź⁄2≜ É™^

#	Article	IF	CITATIONS
37	Performance improvement of a pulse tube cryocooler with a single compressor through cascade utilization of cold energy. Frontiers in Energy, 2021, 15, 345-357.	2.3	1
38	Comparative study on thermodynamic characteristics of composite thermal insulation systems with liquid methane, oxygen, and hydrogen. Journal of Thermal Science and Engineering Applications, 0, , 1-18.	1.5	1
39	Experimental study on a 20W/80K high frequency pulse tube cryocooler. IOP Conference Series: Materials Science and Engineering, 2020, 755, 012038.	0.6	0
40	Thermal physical properties of the golden pomfret at low temperatures. International Journal of Food Engineering, 2021, 17, 309-317.	1.5	0
41	A thermal-coupled/gas-coupled hybrid high-frequency pulse tube cryocooler attaining the liquid-helium temperature. IOP Conference Series: Materials Science and Engineering, 2022, 1240, 012025.	0.6	0
42	Investigation on the dynamic adsorption characteristics of activated carbon to Helium-4 for 4-20 K regenerator of cryocoolers. IOP Conference Series: Materials Science and Engineering, 2022, 1240, 012026.	0.6	0