Gregory P Forlenza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8908124/publications.pdf

Version: 2024-02-01

121 papers 4,655 citations

36 h-index 124990 64 g-index

124 all docs

124 docs citations

times ranked

124

2833 citing authors

#	Article	IF	CITATIONS
1	A Glycemia Risk Index (GRI) of Hypoglycemia and Hyperglycemia for Continuous Glucose Monitoring Validated by Clinician Ratings. Journal of Diabetes Science and Technology, 2023, 17, 1226-1242.	1.3	69
2	Clinical Implementation of the Omnipod 5 Automated Insulin Delivery System: Key Considerations for Training and Onboarding People With Diabetes. Clinical Diabetes, 2022, 40, 168-184.	1.2	10
3	Predicting Success with a First-Generation Hybrid Closed-Loop Artificial Pancreas System Among Children, Adolescents, and Young Adults with Type 1 Diabetes: A Model Development and Validation Study. Diabetes Technology and Therapeutics, 2022, 24, 157-166.	2.4	7
4	Glycemic outcomes of children 2–6 years of age with type 1 diabetes during the pediatric <scp>MiniMed</scp> ™ <scp>670G</scp> system trial. Pediatric Diabetes, 2022, 23, 324-329.	1.2	41
5	Current Status and Emerging Options for Automated Insulin Delivery Systems. Diabetes Technology and Therapeutics, 2022, 24, 362-371.	2.4	31
6	Glycemic Control in Relation to Technology Use in a Single-Center Cohort of Children with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2022, 24, 409-415.	2.4	14
7	Evaluation of a New Clinical Tool to Enhance Clinical Care of Control-IQ Users. Journal of Diabetes Science and Technology, 2022, , 193229682210818.	1.3	O
8	Outcomes in Pump- and CGM-Baseline Use Subgroups in the International Diabetes Closed-Loop (iDCL) Trial. Journal of Diabetes Science and Technology, 2022, , 193229682210893.	1.3	4
9	Safety and Glycemic Outcomes With a Tubeless Automated Insulin Delivery System in Very Young Children With Type 1 Diabetes: A Single-Arm Multicenter Clinical Trial. Diabetes Care, 2022, 45, 1907-1910.	4.3	28
10	Real-World Evidence Supporting Tandem Control-IQ Hybrid Closed-Loop Success in the Medicare and Medicaid Type 1 and Type 2 Diabetes Populations. Diabetes Technology and Therapeutics, 2022, 24, 814-823.	2.4	22
11	How introduction of automated insulin delivery systems may influence psychosocial outcomes in adults with type 1 diabetes: Findings from the first investigation with the Omnipod® 5 System. Diabetes Research and Clinical Practice, 2022, 190, 109998.	1.1	15
12	Pediatric Medicaid Patients With Type 1 Diabetes Benefit From Continuous Glucose Monitor Technology. Journal of Diabetes Science and Technology, 2021, 15, 630-635.	1.3	15
13	Clinical Management and Pump Parameter Adjustment of the Control-IQ Closed-Loop Control System: Results from a 6-Month, Multicenter, Randomized Clinical Trial. Diabetes Technology and Therapeutics, 2021, 23, 245-252.	2.4	13
14	Basalâ€IQ technology in the real world: satisfaction and reduction of diabetes burden in individuals with type 1 diabetes. Diabetic Medicine, 2021, 38, e14381.	1.2	13
15	Safety and Performance of the Tandem t:slim X2 with Control-IQ Automated Insulin Delivery System in Toddlers and Preschoolers. Diabetes Technology and Therapeutics, 2021, 23, 384-391.	2.4	37
16	Closed-Loop Insulin Therapy Improves Glycemic Control in Adolescents and Young Adults: Outcomes from the International Diabetes Closed-Loop Trial. Diabetes Technology and Therapeutics, 2021, 23, 342-349.	2.4	58
17	First Outpatient Evaluation of a Tubeless Automated Insulin Delivery System with Customizable Glucose Targets in Children and Adults with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2021, 23, 410-424.	2.4	52
18	Initiating hybrid closed loop: A program evaluation of an <scp>educatorâ€led Controlâ€lQ</scp> followâ€up at a large pediatric clinic. Pediatric Diabetes, 2021, 22, 586-593.	1.2	11

#	Article	IF	CITATIONS
19	Predictors of Time-in-Range (70–180 mg/dL) Achieved Using a Closed-Loop Control System. Diabetes Technology and Therapeutics, 2021, 23, 475-481.	2.4	36
20	Realâ€world performance of hybrid closed loop in youth, young adults, adults and older adults with type 1 diabetes: Identifying a clinical target for hybrid closedâ€loop use. Diabetes, Obesity and Metabolism, 2021, 23, 2048-2057.	2.2	28
21	Candidate Selection for Hybrid Closed Loop Systems. Diabetes Technology and Therapeutics, 2021, 23, 760-762.	2.4	9
22	Lost in Translation: A Disconnect Between the Science and Medicare Coverage Criteria for Continuous Subcutaneous Insulin Infusion. Diabetes Technology and Therapeutics, 2021, 23, 715-725.	2.4	7
23	Real-World Use of a New Hybrid Closed Loop Improves Glycemic Control in Youth with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2021, 23, 837-843.	2.4	43
24	Multicenter Trial of a Tubeless, On-Body Automated Insulin Delivery System With Customizable Glycemic Targets in Pediatric and Adult Participants With Type 1 Diabetes. Diabetes Care, 2021, 44, 1630-1640.	4.3	133
25	96-LB: Glycemic Management over 6 Months with the Omnipod 5 Automated Insulin Delivery System. Diabetes, 2021, 70, 96-LB.	0.3	1
26	Comparison of cgmanalysis, a free, open-source continuous glucose monitoring (CGM) data management and analysis software to commercially available CGM platforms: Data standardization for diabetes technology research. Diabetes Technology and Therapeutics, 2021, , .	2.4	5
27	Extended Use of the Control-IQ Closed-Loop Control System in Children With Type 1 Diabetes. Diabetes Care, 2021, 44, 473-478.	4.3	28
28	Barriers to Uptake of Insulin Technologies and Novel Solutions. Medical Devices: Evidence and Research, 2021, Volume 14, 339-354.	0.4	10
29	Safety and Performance of the Omnipod Hybrid Closed-Loop System in Adults, Adolescents, and Children with Type 1 Diabetes Over 5 Days Under Free-Living Conditions. Diabetes Technology and Therapeutics, 2020, 22, 174-184.	2.4	61
30	Real world hybrid closedâ€loop discontinuation: Predictors and perceptions of youth discontinuing the 670G system in the first 6 months. Pediatric Diabetes, 2020, 21, 319-327.	1.2	110
31	Six months of hybrid closed loop in the realâ€world: An evaluation of children and young adults using the 670G system. Pediatric Diabetes, 2020, 21, 310-318.	1.2	106
32	Review of the Omnipod sup- \hat{A}^{\otimes} sup- 5 Automated Glucose Control System Powered by Horizonâ,, for the treatment of Type 1 diabetes. Therapeutic Delivery, 2020, 11, 507-519.	1.2	23
33	A Randomized Trial of Closed-Loop Control in Children with Type 1 Diabetes. New England Journal of Medicine, 2020, 383, 836-845.	13.9	271
34	A clinical review of the t:slim X2 insulin pump. Expert Opinion on Drug Delivery, 2020, 17, 1675-1687.	2.4	19
35	Glycemic variability is associated with poor outcomes in pediatric hematopoietic stem cell transplant patients. Pediatric Blood and Cancer, 2020, 67, e28626.	0.8	2
36	Glycemic Outcomes of Use of CLC Versus PLGS in Type 1 Diabetes: A Randomized Controlled Trial. Diabetes Care, 2020, 43, 1822-1828.	4.3	34

#	Article	IF	CITATIONS
37	Suicide via Intentional Insulin Overdose Through First Commercial Hybrid Closed-Loop. Journal of Diabetes Science and Technology, 2020, 14, 687-688.	1.3	4
38	Predictive low glucose suspend systems. , 2020, , 275-292.		0
39	Safety and Accuracy of Factory-Calibrated Continuous Glucose Monitoring in Pediatric Patients Undergoing Hematopoietic Stem Cell Transplantation. Diabetes Technology and Therapeutics, 2020, 22, 727-733.	2.4	6
40	Use of Machine Learning and Hybrid Closed Loop Insulin Delivery at Diabetes Camps. Diabetes Technology and Therapeutics, 2020, 22, 535-537.	2.4	3
41	Managing New-Onset Type 1 Diabetes During the COVID-19 Pandemic: Challenges and Opportunities. Diabetes Technology and Therapeutics, 2020, 22, 431-439.	2.4	126
42	Randomized Controlled Trial of Mobile Closed-Loop Control. Diabetes Care, 2020, 43, 607-615.	4.3	40
43	1296-P: Omnipod Personalized MPC Algorithm at Target Glucose of 110mg/dl Is Safe in Children Aged 2-12 Years without Increasing Risk of Hypoglycemia. Diabetes, 2020, 69, .	0.3	1
44	195-OR: Safety and Performance of the Tandem T:slim X2 with Control-IQ Automated Insulin Delivery System in Preschoolers, Age 2-6 Years Old. Diabetes, 2020, 69, 195-OR.	0.3	2
45	978-P: Omnipod Personalized MPC Algorithm at Target Glucose of 110mg/dl Is Safe in Adults and Adolescents without Increasing Risk of Hypoglycemia. Diabetes, 2020, 69, 978-P.	0.3	1
46	1276-P: First Home Evaluation of the Omnipod Horizon Automated Glucose Control System in Children with Type 1 Diabetes. Diabetes, 2020, 69, 1276-P.	0.3	1
47	984-P: First Home Evaluation of the Omnipod Horizon Automated Glucose Control System in Adults with Type 1 Diabetes. Diabetes, 2020, 69, 984-P.	0.3	0
48	345-OR: First Home Evaluation of the Omnipod Horizon Automated Glucose Control System at Specific Glucose Targets in Children with Type 1 Diabetes. Diabetes, 2020, 69, .	0.3	0
49	983-P: First Home Evaluation of the Omnipod Horizon Automated Glucose Control System at Specific Glucose Targets in Adults with Type 1 Diabetes. Diabetes, 2020, 69, .	0.3	0
50	157-LB: Nocturnal Alarms: A Potential Barrier to Diabetes Technology Use. Diabetes, 2020, 69, 157-LB.	0.3	0
51	100-LB: Closed-Loop Control Reduces Hypoglycemia without Increased Hyperglycemia in Subjects with Increased Prestudy Hypoglycemia: Results from the iDCL DCLP3 Randomized Trial. Diabetes, 2020, 69, .	0.3	0
52	Six-Month Randomized, Multicenter Trial of Closed-Loop Control in Type 1 Diabetes. New England Journal of Medicine, 2019, 381, 1707-1717.	13.9	643
53	cgmanalysis: An R package for descriptive analysis of continuous glucose monitor data. PLoS ONE, 2019, 14, e0216851.	1.1	48
54	MiniMed 670G hybrid closed loop artificial pancreas system for the treatment of type 1 diabetes mellitus: overview of its safety and efficacy. Expert Review of Medical Devices, 2019, 16, 845-853.	1.4	45

#	Article	IF	CITATIONS
55	Use of Artificial Intelligence to Improve Diabetes Outcomes in Patients Using Multiple Daily Injections Therapy. Diabetes Technology and Therapeutics, 2019, 21, S2-4-S2-8.	2.4	13
56	A Clinical Guide to Advanced Diabetes Devices and Closed-Loop Systems Using the CARES Paradigm. Diabetes Technology and Therapeutics, 2019, 21, 462-469.	2.4	71
57	Closed loop control in adolescents and children during winter sports: Use of the Tandem Controlâ€iQ AP system. Pediatric Diabetes, 2019, 20, 759-768.	1.2	47
58	Artificial pancreas in pediatrics., 2019,, 237-259.		1
59	Successful At-Home Use of the Tandem Control-IQ Artificial Pancreas System in Young Children During a Randomized Controlled Trial. Diabetes Technology and Therapeutics, 2019, 21, 159-169.	2.4	76
60	Factory-Calibrated Continuous Glucose Monitoring: How and Why It Works, and the Dangers of Reuse Beyond Approved Duration of Wear. Diabetes Technology and Therapeutics, 2019, 21, 222-229.	2.4	23
61	Performance of Omnipod Personalized Model Predictive Control Algorithm with Moderate Intensity Exercise in Adults with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2019, 21, 265-272.	2.4	33
62	A Clinical Overview of Insulin Pump Therapy for the Management of Diabetes: Past, Present, and Future of Intensive Therapy. Diabetes Spectrum, 2019, 32, 194-204.	0.4	62
63	Malglycemia is associated with poor outcomes in pediatric and adolescent hematopoietic stem cell transplant patients. Blood Advances, 2019, 3, 350-359.	2.5	12
64	The International Diabetes Closed-Loop Study: Testing Artificial Pancreas Component Interoperability. Diabetes Technology and Therapeutics, 2019, 21, 73-80.	2.4	13
65	Safety Evaluation of the MiniMed 670G System in Children 7–13 Years of Age with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2019, 21, 11-19.	2.4	155
66	1059-P: Glycemic Outcomes from the MiniMedâ,,¢ 670G System Pivotal Trials in Patients 2-75 Years of Age. Diabetes, 2019, 68, .	0.3	1
67	1063-P: First Test of the iLet, a Purpose-Built Bionic Pancreas Platform, in Children and Adolescents with Type 1 Diabetes. Diabetes, 2019, 68, .	0.3	1
68	215-OR: Safety and Performance of the Omnipod Hybrid Closed-Loop System in Young Children Aged 2-6 Years with Type 1 Diabetes. Diabetes, 2019, 68, 215-OR.	0.3	5
69	955-P: Evaluating Early Initiation of Continuous Glucose Monitoring (CGM) among Youth Diagnosed with Type 1 Diabetes (T1D). Diabetes, 2019, 68, .	0.3	0
70	1354-P: Novel Telehealth Support Intervention for Young Children Using HCL. Diabetes, 2019, 68, .	0.3	0
71	Safety and Feasibility of the OmniPod Hybrid Closed-Loop System in Adult, Adolescent, and Pediatric Patients with Type 1 Diabetes Using a Personalized Model Predictive Control Algorithm. Diabetes Technology and Therapeutics, 2018, 20, 257-262.	2.4	62
72	Fully Closed-Loop Multiple Model Probabilistic Predictive Controller Artificial Pancreas Performance in Adolescents and Adults in a Supervised Hotel Setting. Diabetes Technology and Therapeutics, 2018, 20, 335-343.	2.4	64

#	Article	IF	CITATIONS
73	Real-Time Detection of Infusion Site Failures in a Closed-Loop Artificial Pancreas. Journal of Diabetes Science and Technology, 2018, 12, 599-607.	1.3	21
74	Optimizing Hybrid Closed-Loop Therapy in Adolescents and Emerging Adults Using the MiniMed 670G System. Diabetes Care, 2018, 41, 789-796.	4.3	101
75	Ongoing Debate About Models for Artificial Pancreas Systems and In Silico Studies. Diabetes Technology and Therapeutics, 2018, 20, 174-176.	2.4	2
76	Type 1 Diabetes Mellitus and Exercise. Contemporary Diabetes, 2018, , 289-305.	0.0	2
77	Predictive hyperglycemia and hypoglycemia minimization: Inâ€home doubleâ€blind randomized controlled evaluation in children and young adolescents. Pediatric Diabetes, 2018, 19, 420-428.	1.2	19
78	The dawn of automated insulin delivery: A new clinical framework to conceptualize insulin administration. Pediatric Diabetes, 2018, 19, 14-17.	1.2	23
79	Biopsychosocial Factors Associated With Satisfaction and Sustained Use of Artificial Pancreas Technology and Its Components: a Call to the Technology Field. Current Diabetes Reports, 2018, 18, 114.	1.7	30
80	In-Clinic Evaluation of the MiniMed 670G System "Suspend Before Low―Feature in Children with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2018, 20, 731-737.	2.4	25
81	ISPAD Clinical Practice Consensus Guidelines 2018: Diabetes technologies. Pediatric Diabetes, 2018, 19, 302-325.	1.2	170
82	Performance of the Omnipod Personalized Model Predictive Control Algorithm with Meal Bolus Challenges in Adults with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2018, 20, 585-595.	2.4	39
83	Predictive Low-Glucose Suspend Reduces Hypoglycemia in Adults, Adolescents, and Children With Type 1 Diabetes in an At-Home Randomized Crossover Study: Results of the PROLOG Trial. Diabetes Care, 2018, 41, 2155-2161.	4.3	184
84	Malglycemia is Associated with Increased Mortality in Pediatric Hematopoietic Stem Cell Transplant Recipients. Biology of Blood and Marrow Transplantation, 2018, 24, S61-S62.	2.0	0
85	Preserving Skin Integrity with Chronic Device Use in Diabetes. Diabetes Technology and Therapeutics, 2018, 20, S2-54-S2-64.	2.4	72
86	Exceptional Usability of Tandem t:slim X2 with Basal-IQ Predictive Low-Glucose Suspend (PLGS)â€"The PROLOG Study. Diabetes, 2018, 67, .	0.3	3
87	Safety and Performance of the Omnipod \hat{A}^{\otimes} Hybrid Closed-Loop System in Children Aged 6-12 Years with Type 1 Diabetes over Five Days Under Free-Living Conditions. Diabetes, 2018, 67, 1377-P.	0.3	0
88	Characterization of the Predictive Low Glucose Management (PLGM) Algorithm of the MiniMed 670G System in Children. Diabetes, 2018, 67, 965-P.	0.3	0
89	Safety and Performance of the Omnipod \hat{A}^{\otimes} Hybrid Closed-Loop System in Adults with Type 1 Diabetes over Five Days Under Free-Living Conditions. Diabetes, 2018, 67, .	0.3	3
90	Safety and Performance of the Omnipod® Hybrid Closed-Loop System in Adolescents with Type 1 Diabetes over Five Days Under Free-Living Conditions. Diabetes, 2018, 67, 1376-P.	0.3	0

#	Article	IF	Citations
91	Overnight to Early-Morning Glycemic Outcomes in Children Using the MiniMedâ,,¢ 670G Hybrid Closed-Loop (HCL) System. Diabetes, 2018, 67, 236-OR.	0.3	O
92	Real-World Use of Hybrid Closed-Loop Therapy in Pediatric Patients with Type 1 Diabetes. Diabetes, 2018, 67, 977-P.	0.3	0
93	Predictive Hyperglycemia and Hypoglycemia Minimization: In-Home Evaluation of Safety, Feasibility, and Efficacy in Overnight Glucose Control in Type 1 Diabetes. Diabetes Care, 2017, 40, 359-366.	4.3	20
94	Obesity in children with congenital adrenal hyperplasia in the Minnesota cohort: importance of adjusting body mass index for heightâ€age. Clinical Endocrinology, 2017, 86, 708-716.	1.2	25
95	Total Pancreatectomy With Islet Autotransplantation Resolves Pain in Young Children With Severe Chronic Pancreatitis. Journal of Pediatric Gastroenterology and Nutrition, 2017, 64, 440-445.	0.9	76
96	Insulin Infusion Sets and Continuous Glucose Monitoring Sensors: Where the Artificial Pancreas Meets the Patient. Diabetes Technology and Therapeutics, 2017, 19, 206-208.	2.4	0
97	Outpatient Closed-Loop Control with Unannounced Moderate Exercise in Adolescents Using Zone Model Predictive Control. Diabetes Technology and Therapeutics, 2017, 19, 331-339.	2.4	56
98	Dietary intake and risk of non-severe hypoglycemia in adolescents with type 1 diabetes. Journal of Diabetes and Its Complications, 2017, 31, 1340-1347.	1.2	15
99	Artificial Pancreas in Young Children. Diabetes Technology and Therapeutics, 2017, 19, 277-279.	2.4	1
100	Application of Zone Model Predictive Control Artificial Pancreas During Extended Use of Infusion Set and Sensor: A Randomized Crossover-Controlled Home-Use Trial. Diabetes Care, 2017, 40, 1096-1102.	4.3	46
101	Sporadic Insulinoma Presenting as Early Morning Night Terrors. Pediatrics, 2017, 139, .	1.0	4
102	Practical Considerations on the Use of Continuous Glucose Monitoring in Pediatrics and Older Adults and Nonadjunctive Use. Diabetes Technology and Therapeutics, 2017, 19, S-13-S-20.	2.4	38
103	Ambulatory glucose profile analysis of the juvenile diabetes research foundation continuous glucose monitoring dataset—Applications to the pediatric diabetes population. Pediatric Diabetes, 2017, 18, 622-628.	1.2	19
104	Closed-Loop Control During Intense Prolonged Outdoor Exercise in Adolescents With Type 1 Diabetes: The Artificial Pancreas Ski Study. Diabetes Care, 2017, 40, 1644-1650.	4.3	130
105	010–Automated Insulin Delivery (Artificial Pancreas) on the Horizon: Educational Considerations for Youth with Type 1 Diabetes. Journal of Pediatric Nursing, 2017, 34, 104-105.	0.7	2
106	Closed-Loop Control Without Meal Announcement in Type 1 Diabetes. Diabetes Technology and Therapeutics, 2017, 19, 527-532.	2.4	87
107	Effect of Oral Insulin on Prevention of Diabetes in Relatives of Patients With Type 1 Diabetes. JAMA - Journal of the American Medical Association, 2017, 318, 1891.	3.8	142
108	Relevance of Bolus Calculators in Current Hybrid Closed Loop Systems. Diabetes Technology and Therapeutics, 2017, 19, 400-401.	2.4	6

#	Article	IF	CITATIONS
109	A Practical Approach to Using Trend Arrows on the Dexcom G5 CGM System to Manage Children and Adolescents With Diabetes. Journal of the Endocrine Society, 2017, 1, 1461-1476.	0.1	53
110	Continuous Glucose Monitoring Enables the Detection of Losses in Infusion Set Actuation (LISAs). Sensors, 2017, 17, 161.	2.1	21
111	Successful Application of Closed-Loop Artificial Pancreas Therapy After Islet Autotransplantation. American Journal of Transplantation, 2016, 16, 527-534.	2.6	16
112	Accuracy of Continuous Glucose Monitoring in Patients After Total Pancreatectomy with Islet Autotransplantation. Diabetes Technology and Therapeutics, 2016, 18, 455-463.	2.4	14
113	Duration of Infusion Set Survival in Lipohypertrophy Versus Nonlipohypertrophied Tissue in Patients with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2016, 18, 429-435.	2.4	27
114	Progress in Diabetes Technology: Developments in Insulin Pumps, Continuous Glucose Monitors, and Progress towards the Artificial Pancreas. Journal of Pediatrics, 2016, 169, 13-20.	0.9	51
115	Diabetes Technology and Therapy in the Pediatric Age Group. US Endocrinology, 2016, 12, 22.	0.3	1
116	Next generation sequencing in endocrine practice. Molecular Genetics and Metabolism, 2015, 115, 61-71.	0.5	24
117	Refining the Closed Loop in the Data Age: Research-to-Practice Transitions in Diabetes Technology. Diabetes Technology and Therapeutics, 2015, 17, 304-306.	2.4	4
118	Near-Euglycemia Can Be Achieved Safely in Pediatric Total Pancreatectomy Islet Autotransplant Recipients Using an Adapted Intravenous Insulin Infusion Protocol. Diabetes Technology and Therapeutics, 2014, 16, 706-713.	2.4	16
119	Growth hormone treatment of patients with Fanconi Anemia after hematopoietic cell transplantation. Pediatric Blood and Cancer, 2014, 61, 1142-1143.	0.8	10
120	The epidemic of type 1 diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2011, 18, 248-251.	1.2	105
121	Ankyloglossia, Exclusive Breastfeeding, and Failure to Thrive. Pediatrics, 2010, 125, e1500-e1504.	1.0	26