
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8908079/publications.pdf

Version: 2024-02-01

ΙΙΛ-ΟΙΛΝ ΙΙΛΝΟ

#	Article	IF	CITATIONS
1	Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment. Water Research, 2002, 36, 1397-1408.	5.3	443
2	Occurrence, transportation, monitoring and treatment of emerging micro-pollutants in waste water — A review from global views. Microchemical Journal, 2013, 110, 292-300.	2.3	286
3	Comparison of modified montmorillonite adsorbents. Chemosphere, 2002, 47, 711-716.	4.2	273
4	Laboratory study of electro-coagulation–flotation for water treatment. Water Research, 2002, 36, 4064-4078.	5.3	269
5	Pharmaceutical residues in wastewater treatment works effluents and their impact on receiving river water. Journal of Hazardous Materials, 2009, 166, 655-661.	6.5	240
6	The role of coagulation in water treatment. Current Opinion in Chemical Engineering, 2015, 8, 36-44.	3.8	236
7	Occurrence of microplastics and its pollution in the environment: A review. Sustainable Production and Consumption, 2018, 13, 16-23.	5.7	203
8	Research progress in the use of ferrate(VI) for the environmental remediation. Journal of Hazardous Materials, 2007, 146, 617-623.	6.5	194
9	Technologies for Boron Removal. Industrial & Engineering Chemistry Research, 2008, 47, 16-24.	1.8	168
10	The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate. Chemosphere, 2004, 56, 949-956.	4.2	165
11	Removing arsenic from groundwater for the developing world - a review. Water Science and Technology, 2001, 44, 89-98.	1.2	148
12	The exploration of potassium ferrate(VI) as a disinfectant/coagulant in water and wastewater treatment. Chemosphere, 2006, 63, 212-219.	4.2	146
13	Occurrence and treatment trials of endocrine disrupting chemicals (EDCs) in wastewaters. Chemosphere, 2005, 61, 544-550.	4.2	145
14	Advances in the development and application of ferrate(<scp>VI</scp>) for water and wastewater treatment. Journal of Chemical Technology and Biotechnology, 2014, 89, 165-177.	1.6	129
15	Methodologies for the analytical determination of ferrate(VI): A Review. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 453-460.	0.9	106
16	The application of potassium ferrate for sewage treatment. Journal of Environmental Management, 2006, 79, 215-220.	3.8	104
17	Comparison of Polyferric Sulphate with Other Coagulants for the Removal of Algae and Algae-Derived Organic Matter. Water Science and Technology, 1993, 27, 221-230.	1.2	99
18	Arsenic Contaminated Groundwater and Its Treatment Options in Bangladesh. International Journal of Environmental Research and Public Health, 2013, 10, 18-46.	1.2	95

JIA-QIAN JIANG

#	Article	IF	CITATIONS
19	Monitoring of iodinated X-ray contrast media in surface water. Chemosphere, 2006, 64, 1318-1324.	4.2	91
20	The role of potassium ferrate(VI) in the inactivation of Escherichia coli and in the reduction of COD for water remediation. Desalination, 2007, 210, 266-273.	4.0	91
21	Study on the sorption–desorption–regeneration performance of Ca-, Mg- and CaMg-based layered double hydroxides for removing phosphate from water. Chemical Engineering Journal, 2014, 246, 97-105.	6.6	90
22	On-line production of ferrate with an electrochemical method and its potential application for wastewater treatment – A review. Journal of Environmental Management, 2009, 90, 1350-1356.	3.8	85
23	Reaction kinetics and oxidation products formation in the degradation of ciprofloxacin and ibuprofen by ferrate(VI). Chemosphere, 2015, 119, S95-S100.	4.2	80
24	Comparison of modified montmorillonite adsorbents. Chemosphere, 2003, 53, 53-62.	4.2	78
25	Observations of the comparative hydrolysis/precipitation behaviour of polyferric sulphate and ferric sulphate. Water Research, 1998, 32, 930-935.	5.3	77
26	Preliminarily comparative performance of removing bisphenol-S by ferrate oxidation and ozonation. Npj Clean Water, 2021, 4, .	3.1	75
27	Formation of oxidation by-products of the iodinated X-ray contrast medium iomeprol during ozonation. Chemosphere, 2008, 70, 1238-1246.	4.2	73
28	The online generation and application of ferrate(VI) for sewage treatment—A pilot scale trial. Separation and Purification Technology, 2009, 68, 227-231.	3.9	73
29	Preparation and Evaluation of Potassium Ferrate as an Oxidant and Coagulant for Potable Water Treatment. Environmental Engineering Science, 2001, 18, 323-328.	0.8	70
30	DEVELOPMENT OF COAGULATION THEORY AND PRE-POLYMERIZED COAGULANTS FOR WATER TREATMENT. Separation and Purification Reviews, 2001, 30, 127-141.	0.8	69
31	Enhanced Coagulation with Potassium Ferrate(VI) for Removing Humic Substances. Environmental Engineering Science, 2003, 20, 627-633.	0.8	69
32	Preliminary study of ciprofloxacin (cip) removal by potassium ferrate(VI). Separation and Purification Technology, 2012, 88, 95-98.	3.9	69
33	Preparation and characterisation of an optimal polyferric sulphate (PFS) as a coagulant for water treatment. Journal of Chemical Technology and Biotechnology, 1998, 73, 351-358.	1.6	67
34	Enhanced Coagulation Using Al/Fe(III) Coagulants: Effect of Coagulant Chemistry on the Removal of Colour-Causing NOM. Environmental Technology (United Kingdom), 1996, 17, 937-950.	1.2	66
35	Treatment of selected pharmaceuticals by ferrate(VI): Performance, kinetic studies and identification of oxidation products. Journal of Pharmaceutical and Biomedical Analysis, 2015, 106, 37-45.	1.4	63
36	Laboratory Study of Boron Removal by Mg/Al Double-Layered Hydroxides. Industrial & Engineering Chemistry Research, 2007, 46, 4577-4583.	1.8	60

#	Article	IF	CITATIONS
37	Development of novel inorganic adsorbent for water treatment. Current Opinion in Chemical Engineering, 2012, 1, 191-199.	3.8	58
38	Removal of Iodinated X-Ray Contrast Media During Drinking Water Treatment. Environmental Chemistry, 2006, 3, 35.	0.7	57
39	Preliminary evaluation of polymeric Fe- and Al-modified clays as adsorbents for heavy metal removal in water treatment. Journal of Chemical Technology and Biotechnology, 2002, 77, 546-551.	1.6	56
40	Filtration Process and Alternative Filter Media Material in Water Treatment. Water (Switzerland), 2020, 12, 3377.	1.2	56
41	Strategic phosphate removal/recovery by a re-usable Mg–Fe–Cl layered double hydroxide. Chemical Engineering Research and Design, 2017, 107, 454-462.	2.7	52
42	Oxidation and coagulation of humic substances by potassium ferrate. Water Science and Technology, 2010, 62, 929-936.	1.2	51
43	The significance of algae as trihalomethane precursors. Water Science and Technology, 1998, 37, 83.	1.2	49
44	Reaction kinetics and oxidation product formation in the degradation of acetaminophen by ferrate (VI). Chemosphere, 2016, 155, 583-590.	4.2	47
45	Pharmaceutical removal from wastewater by ferrate(VI) and preliminary effluent toxicity assessments by the zebrafish embryo model. Microchemical Journal, 2013, 110, 239-245.	2.3	42
46	Removal of Arsenic (<scp>III</scp>) from groundwater applying a reusable Mgâ€Feâ€Cl layered double hydroxide. Journal of Chemical Technology and Biotechnology, 2015, 90, 1160-1166.	1.6	39
47	Drinking water treatment by <i>in situ</i> generated ferrate(VI). Desalination and Water Treatment, 2015, 55, 731-739.	1.0	33
48	Preparation and performance of a high purity poly-aluminum chloride. Chemical Engineering Journal, 2010, 156, 64-69.	6.6	31
49	Electrochemical generation of ferrate (VI): Determination of optimum conditions. Desalination, 2010, 254, 175-178.	4.0	29
50	The role of ferrate(VI) in the remediation of emerging micropollutants: a review. Desalination and Water Treatment, 2015, 55, 828-835.	1.0	29
51	Comparison of Algal Removal by Coagulation with Clays and Alâ€based Coagulants. Separation Science and Technology, 2008, 43, 1677-1686.	1.3	28
52	Practical application of ferrate(VI) for water and wastewater treatment – Site study's approach. Water-Energy Nexus, 2018, 1, 42-46.	1.7	27
53	Removal of Pharmaceutical Residues by Ferrate(VI). PLoS ONE, 2013, 8, e55729.	1.1	27
54	Preparation of Modified Clay Adsorbents for the Removal of Humic Acid. Environmental Engineering Science, 2003, 20, 581-586.	0.8	26

#	Article	IF	CITATIONS
55	Electrochemical Production of Ferrate (Iron VI): Application to the Wastewater Treatment on a Laboratory Scale and Comparison with Iron (III) Coagulant. Water, Air, and Soil Pollution, 2010, 209, 483-488.	1.1	26
56	Preliminary evaluation of the performance of new pre-polymerised inorganic coagulants for lowland surface water treatment. Water Science and Technology, 1998, 37, 121.	1.2	25
57	Removal of sulfadiazine by ferrate(VI) oxidation and montmorillonite adsorption—Synergistic effect and degradation pathways. Journal of Environmental Chemical Engineering, 2019, 7, 103225.	3.3	24
58	Mechanisms of Boron Removal with Electrocoagulation. Environmental Chemistry, 2006, 3, 350.	0.7	20
59	Preparation and Use of Modified Clay Coagulants for Wastewater Treatment. Water, Air, and Soil Pollution, 2004, 158, 53-65.	1.1	19
60	Comparative Coagulant Demand of Polyferric Chloride and Ferric Chloride for the Removal of Humic Acid. Separation Science and Technology, 2009, 44, 386-397.	1.3	19
61	Electrocoagulation: a new approach for the removal of boron containing wastes. Desalination and Water Treatment, 2009, 2, 133-140.	1.0	19
62	Detection of ibuprofen and ciprofloxacin by solid-phase extraction and UV/Vis spectroscopy. Journal of Applied Spectroscopy, 2012, 79, 459-464.	0.3	19
63	Adsorption of bisphenol A onto cationic-modified zeolite. Desalination and Water Treatment, 2016, 57, 26299-26306.	1.0	19
64	Toxicity assessment of four pharmaceuticals in aquatic environment before and after ferrate(VI) treatment. Journal of Environmental Chemical Engineering, 2018, 6, 3787-3797.	3.3	19
65	Removing arsenic from groundwater for the developing world–a review. Water Science and Technology, 2001, 44, 89-98.	1.2	18
66	The Role of Ferrate(VI) in the Remediation of Emerging Micro Pollutants. Procedia Environmental Sciences, 2013, 18, 418-426.	1.3	17
67	Preliminary evaluation of the performance of new pre-polymerised inorganic coagulants for lowland surface water treatment. Water Science and Technology, 1998, 37, 121-128.	1.2	16
68	Effects of the type and structure of modified clays on adsorption performance. International Journal of Environmental Studies, 2005, 62, 403-414.	0.7	15
69	Engineering Aspects of Electrochemical Generation of Ferrate: A Step Towards Its Full Scale Application for Water and Wastewater Treatment. Water, Air, and Soil Pollution, 2010, 210, 203-210.	1.1	15
70	Treatability of five micro-pollutants using modified Fenton reaction catalysed by zero-valent iron powder (Fe(0)). Journal of Environmental Chemical Engineering, 2021, 9, 105393.	3.3	15
71	Removal of boron (B) from waste liquors. Water Science and Technology, 2006, 53, 73-79.	1.2	14
72	The effect of metal cations on phenol adsorption by hexadecyl-trimethyl-ammonium bromide (hdtma) modified clinoptilolite (Ct.). Separation and Purification Technology, 2011, 80, 658-662.	3.9	14

#	Article	IF	CITATIONS
73	Evaluation of modified clay coagulant for sewage treatment. Chemosphere, 2004, 56, 181-185.	4.2	13
74	Preliminary study of calcium silicate hydrate (tobermorite) as crystal material to recovery phosphate from wastewater. Desalination and Water Treatment, 2010, 23, 49-54.	1.0	13
75	Potential Routes to Obtain Value-Added Iron-Containing Compounds from Red Mud. Journal of Sustainable Metallurgy, 2017, 3, 561-569.	1.1	13
76	Comparative removal of imidacloprid, <scp>bisphenol‣,</scp> and azithromycin with ferrate and <scp>FeCl₃</scp> and assessment of the resulting toxicity. Journal of Chemical Technology and Biotechnology, 2021, 96, 99-112.	1.6	13
77	Development of Optimal Poly-Alumino–Iron Sulphate Coagulant. Journal of Environmental Engineering, ASCE, 2003, 129, 699-708.	0.7	11
78	Phosphorus Recovery by Liquid–Liquid Extraction. Separation Science and Technology, 2009, 44, 3258-3266.	1.3	11
79	Simultaneous Detection of Sulfamethoxazole, Diclofenac, Carbamazepine, and Bezafibrate by Solid Phase Extraction and High Performance Liquid Chromatography with Diode Array Detection. Journal of Applied Spectroscopy, 2014, 81, 273-278.	0.3	10
80	Comparative Performance of Catalytic Fenton Oxidation with Zero-Valent Iron (Fe(0)) in Comparison with Ferrous Sulphate for the Removal of Micropollutants. Applied Sciences (Switzerland), 2019, 9, 2181.	1.3	10
81	A survey of endocrine disrupting chemicals in sewage and a preliminary treatment trial. Water Science and Technology, 2005, 52, 1-7.	1.2	9
82	Risk assessment of hydrogen gas production in the laboratory scale electrochemical generation of ferrate(VI). Journal of Chemical Health and Safety, 2008, 15, 16-20.	1.1	9
83	Preparation and evaluation of layered double hydroxides (LDHs) for phosphate removal. Desalination and Water Treatment, 2015, 55, 836-843.	1.0	9
84	Detection of imidacloprid and Bisphenol-S by Solid Phase Extraction (SPE) coupled with UV-VIS spectrometer and LC-MS. Biointerface Research in Applied Chemistry, 2019, 9, 4433-4438.	1.0	8
85	Preliminary Evaluation of Polyferric Sulphate As a Coagulant for Surface Water Treatment. , 1994, , 71-93.		7
86	Evaluating the Coagulation Performance of Ferrate: A Preliminary Study. ACS Symposium Series, 2008, , 292-305.	0.5	6
87	Advances Made in Understanding the Interaction of Ferrate(VI) with Natural Organic Matter in Water. , 2014, , 183-197.		6
88	Drinking water treatment by ferrate(VI) and toxicity assessment of the treated water. Desalination and Water Treatment, 2016, 57, 26369-26375.	1.0	6
89	Treatment of landscape water (LSW) by electrocoagulation process. Desalination and Water Treatment, 2012, 37, 62-68.	1.0	5
90	Use of Ca- and Mg-type layered double hydroxide adsorbent to reduce phosphate concentration in secondary effluent of domestic wastewater treatment plant. , 0, 127, 64-70.		5

JIA-QIAN JIANG

#	Article	IF	CITATIONS
91	The Use of Ferrate(VI) Technology in Sludge Treatment. ACS Symposium Series, 2008, , 306-325.	0.5	4
92	Ferrate(VI): A Green Chemistry Oxidant for Removal of Antibiotics in Water. ACS Symposium Series, 2013, , 31-44.	0.5	4
93	Enhanced Coagulation Using Al/Fe(III) Coagulants: Effect of Coagulant Chemistry on the Removal of Colour-Causing NOM. Environmental Technology (United Kingdom), 1996, 17, 937-950.	1.2	4
94	Screening analysis of volatile organic contaminants in commercial inorganic coagulants used for drinking water treatment. Journal of Environmental Management, 2009, 91, 142-148.	3.8	3
95	Ferrate(VI): Novel Compound for Removal of Natural Organic Matter in Water. , 2013, , 911-914.		3
96	Suitability of semi-quantitative inductive coupled plasma-mass spectrometry for multi-elemental screening in water contamination warning system. Journal of Applied Spectroscopy, 2013, 80, 437-448.	0.3	3
97	Assessment of recycled glass and expanded clay in a dual media configuration for drinking water treatment. Separation Science and Technology, 2016, 51, 2455-2464.	1.3	3
98	Non-Parametric Regression Analysis of Diuron and Gabapentin Degradation in Lake Constance Water by Ozonation and Their Toxicity Assessment. Water (Switzerland), 2019, 11, 852.	1.2	3
99	Evaluation of Poly-Alumino-Iron Sulphate (PAFS) as a Coagulant for Water Treatment. , 1998, , 15-24.		2
100	Proficiency test of non-target screening with gas chromatography mass spectrometry to confirm a detected contamination of raw and drinking water. Water Science and Technology: Water Supply, 2010, 10, 806-814.	1.0	2
101	A survey of endocrine disrupting chemicals in sewage and a preliminary treatment trial. Water Science and Technology, 2005, 52, 1-7.	1.2	1
102	Removal of Selected Pharmaceuticals Spiked in the Secondary Effluent of a Wastewater Treatment Plant (WWTP) by Potassium Ferrate(VI). ACS Symposium Series, 2016, , 275-285.	0.5	0
103	Field Study III: Evidence Gained from Site Studies for the Performance of Ferrate(VI) in Water and Wastewater Treatment. Applied Environmental Science and Engineering for A Sustainable Future, 2020, , 289-297.	0.2	0
104	Removing imidacloprid, bisphenol-S and azithromycin by ferrate (Fe(VI)): efficiency, oxidation products, toxicity and kinetics. Environmental Challenges, 2022, , 100552.	2.0	0