LoÃ⁻c Lanco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8908011/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Near-optimal single-photon sources in the solid state. Nature Photonics, 2016, 10, 340-345.	15.6	858
2	Bright solid-state sources of indistinguishable single photons. Nature Communications, 2013, 4, 1425.	5.8	309
3	Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography. Physical Review Letters, 2008, 101, 267404.	2.9	264
4	Deterministic and electrically tunable bright single-photon source. Nature Communications, 2014, 5, 3240.	5.8	110
5	Optical Nonlinearity for Few-Photon Pulses on a Quantum Dot-Pillar Cavity Device. Physical Review Letters, 2012, 109, 166806.	2.9	77
6	Semiconductor Waveguide Source of Counterpropagating Twin Photons. Physical Review Letters, 2006, 97, 173901.	2.9	74
7	Macroscopic rotation of photon polarization induced by a single spin. Nature Communications, 2015, 6, 6236.	5.8	73
8	Origin of the Optical Emission within the Cavity Mode of Coupled Quantum Dot-Cavity Systems. Physical Review Letters, 2009, 103, 027401.	2.9	68
9	A solid-state single-photon filter. Nature Nanotechnology, 2017, 12, 663-667.	15.6	66
10	Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar. Applied Physics Letters, 2010, 97, .	1.5	65
11	Bright Polarized Single-Photon Source Based on a Linear Dipole. Physical Review Letters, 2021, 126, 233601.	2.9	65
12	Micropillar Resonators for Optomechanics in the Extremely High 19–95-GHz Frequency Range. Physical Review Letters, 2017, 118, 263901.	2.9	63
13	Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides. Applied Physics Letters, 2004, 84, 2974-2976.	1.5	62
14	Cavity-enhanced two-photon interference using remote quantum dot sources. Physical Review B, 2015, 92, .	1.1	60
15	Coherent manipulation of a solid-state artificial atom with few photons. Nature Communications, 2016, 7, 11986.	5.8	55
16	Sequential generation of linear cluster states from a single photon emitter. Nature Communications, 2020, 11, 5501.	5.8	53
17	Scalable implementation of strongly coupled cavity-quantum dot devices. Applied Physics Letters, 2009, 94, .	1.5	44
18	Reproducibility of High-Performance Quantum Dot Single-Photon Sources. ACS Photonics, 2020, 7, 1050-1059.	3.2	44

LoÃ⁻c Lanco

#	Article	IF	CITATIONS
19	Measuring propagation loss in a multimode semiconductor waveguide. Journal of Applied Physics, 2005, 97, 073105.	1.1	43
20	Topological nanophononic states by band inversion. Physical Review B, 2018, 97, .	1.1	41
21	Generation of non-classical light in a photon-number superposition. Nature Photonics, 2019, 13, 803-808.	15.6	39
22	Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000. Applied Physics Letters, 2012, 100, 111111.	1.5	38
23	Near-infrared optical parametric oscillator in a III-V semiconductor waveguide. Applied Physics Letters, 2013, 103, .	1.5	35
24	Bright Phonon-Tuned Single-Photon Source. Nano Letters, 2015, 15, 6290-6294.	4.5	34
25	Hong-Ou-Mandel Interference with Imperfect Single Photon Sources. Physical Review Letters, 2021, 126, 063602.	2.9	32
26	Optomechanical properties of GaAs/AlAs micropillar resonators operating in the 18 GHz range. Optics Express, 2017, 25, 24437.	1.7	31
27	Interfacing scalable photonic platforms: solid-state based multi-photon interference in a reconfigurable glass chip. Optica, 2019, 6, 1471.	4.8	30
28	Frequency cavity pulling induced by a single semiconductor quantum dot. Physical Review B, 2014, 89, .	1.1	25
29	Single-shot initialization of electron spin in a quantum dot using a short optical pulse. Physical Review B, 2011, 83, .	1.1	22
30	Photon-number entanglement generated by sequential excitation of a two-level atom. Nature Photonics, 2022, 16, 374-379.	15.6	17
31	Influence of the Purcell effect on the purity of bright single photon sources. Applied Physics Letters, 2013, 103, .	1.5	16
32	Cavity-Enhanced Real-Time Monitoring of Single-Charge Jumps at the Microsecond Time Scale. Physical Review X, 2014, 4, .	2.8	16
33	Theory of optical spin control in quantum dot microcavities. Physical Review B, 2015, 92, .	1.1	15
34	Brillouin scattering in hybrid optophononic Bragg micropillar resonators at 300  GHz. Optica, 2019, 6, 854.	4.8	15
35	Toward an AlGaAs/AlOx near-infrared integrated optical parametric oscillator. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 542.	0.9	13
36	Tomography of the optical polarization rotation induced by a single quantum dot in a cavity. Optica, 2017. 4. 1326.	4.8	12

LoÃ⁻c Lanco

#	Article	IF	CITATIONS
37	Measurement back action and spin noise spectroscopy in a charged cavity QED device in the strong coupling regime. Physical Review B, 2017, 96, .	1.1	11
38	Backward difference frequency generation in an AlGaAs waveguide. Applied Physics Letters, 2006, 89, 031106.	1.5	8
39	Time-frequency encoded single-photon generation and broadband single-photon storage with a tunable subradiant state. Optica, 2021, 8, 95.	4.8	8
40	Time-resolved thermal characterization of semiconductor lasers. Applied Physics Letters, 2007, 90, 021105.	1.5	7
41	Nanomechanical resonators based on adiabatic periodicity-breaking in a superlattice. Applied Physics Letters, 2017, 111, 173107.	1.5	7
42	Accurate measurement of a 96% input coupling into a cavity using polarization tomography. Applied Physics Letters, 2018, 112, .	1.5	7
43	Deterministic assembly of a charged-quantum-dot–micropillar cavity device. Physical Review B, 2020, 102, .	1.1	7
44	Quantum Zeno effect and quantum nondemolition spin measurement in a quantum dot–micropillar cavity in the strong coupling regime. Physical Review B, 2021, 103, .	1.1	7
45	Tunable bandwidth and nonlinearities in an atom-photon interface with subradiant states. Physical Review A, 2018, 98, .	1.0	4
46	Parametric fluorescence in semiconductor waveguides. Comptes Rendus Physique, 2007, 8, 1184-1197.	0.3	3
47	Overcomplete quantum tomography of a path-entangled two-photon state. Physical Review A, 2019, 99,	1.0	3
48	Quantum stabilization of microcavity excitation in a coupled microcavity–half-cavity system. Physical Review B, 2020, 101, .	1.1	3
49	Semiconductor sources of twin photons for quantum information. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7, S158-S165.	1.4	2
50	A Highly Efficient Single Photon-Single Quantum Dot Interface. Nano-optics and Nanophotonics, 2015, , 39-71.	0.2	2
51	Technique for time-resolved thermal characterisation of optoelectronic devices. Electronics Letters, 2007, 43, 417.	0.5	1
52	Generating multi-photon entangled states from a single deterministic single-photon source. , 2019, , .		1
53	Near-infrared OPO in an AlGaAs/AlOx waveguide. Proceedings of SPIE, 2013, , .	0.8	0
54	Toward a quantum network based on semiconductor quantum dots. , 2014, , .		0

LoÃ⁻c Lanco

#	Article	IF	CITATIONS
55	Bright phonon-tuned single-photon source. , 2015, , .		0
56	Quantum-dot-based quantum devices (Conference Presentation). , 2017, , .		0
57	Cavity quantum electrodynamics with semiconductor quantum dots. , 2013, , .		0
58	Quantum dot based quantum optics. , 2015, , .		0
59	Giant Polarization Rotation Induced by a Single Spin: a Cavity-Based Spin-Photon Interface. , 2015, , .		0
60	Light-matter interfacing with quantum dots: a polarization tomography approach. , 2017, , .		0
61	Single photon Fock state filtering with an artificial atom. , 2017, , .		0
62	Overcoming phonon-induced decoherence in single-photon sources with cavity quantum electrodynamics. , 2017, , .		0
63	Interfacing solid-state single-photon sources and integrated photonics circuits: high rate three-photon coalescence. , 2019, , .		0
64	Generation of quantum light in a photon-number superposition. , 2019, , .		0
65	A Compact and scalable source for entangled photonic linear cluster states. , 2019, , .		0
66	Sequential Generation of Linear Cluster States from a Single Photon Emitter. , 2020, , .		0