Oleg Smorygo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8907900/publications.pdf

Version: 2024-02-01

OLEC SMORYCO

#	Article	lF	CITATIONS
1	Evolution of the interlayer microstructure and the fracture modes of the zirconia/Cu–Ag–Ti filler/Ti active brazing joints. Materials Letters, 2007, 61, 613-616.	2.6	52
2	High-porosity titanium foams by powder coated space holder compaction method. Materials Letters, 2012, 83, 17-19.	2.6	48
3	Nanocomposite catalysts for internal steam reforming of methane and biofuels in solid oxide fuel cells: Design and performance. Catalysis Today, 2009, 146, 132-140.	4.4	36
4	Transformation of CH4 and liquid fuels into syngas on monolithic catalysts. Fuel, 2010, 89, 1230-1240.	6.4	36
5	Structured catalyst supports and catalysts for the methane indirect internal steam reforming in the intermediate temperature SOFC. International Journal of Hydrogen Energy, 2009, 34, 9505-9514.	7.1	33
6	Theoretical and experimental study of methane partial oxidation to syngas in catalytic membrane reactor with asymmetric oxygen-permeable membrane. Catalysis Today, 2016, 268, 103-110.	4.4	32
7	Functional nanoceramics for intermediate temperature solid oxide fuel cells and oxygen separation membranes. Journal of the European Ceramic Society, 2013, 33, 2241-2250.	5.7	30
8	Nickel foams with oxidation-resistant coatings formed by combustion synthesis. Scripta Materialia, 2008, 58, 910-913.	5.2	26
9	Structured nanocomposite catalysts of biofuels transformation into syngas and hydrogen: Design and performance. International Journal of Hydrogen Energy, 2015, 40, 7511-7522.	7.1	26
10	Structured catalysts for steam/autothermal reforming of biofuels on heat-conducting substrates: Design and performance. Catalysis Today, 2015, 251, 19-27.	4.4	24
11	Design of asymmetric multilayer membranes based on mixed ionic–electronic conducting composites supported on Ni–Al foam substrate. Catalysis Today, 2010, 156, 173-180.	4.4	23
12	An inverted spherical model of an open-cell foam structure. Acta Materialia, 2011, 59, 2669-2678.	7.9	22
13	Monolithic catalyst supports with foam structure. Reaction Kinetics and Catalysis Letters, 1997, 60, 259-267.	0.6	20
14	Tailoring properties of reticulated vitreous carbon foams with tunable density. Frontiers of Materials Science, 2016, 10, 157-167.	2.2	19
15	Novel nanocomposite materials for oxygen and hydrogen separation membranes. International Journal of Hydrogen Energy, 2020, 45, 13575-13585.	7.1	19
16	Solid oxide fuel cell composite cathodes based on perovskite and fluorite structures. Journal of Power Sources, 2011, 196, 7104-7109.	7.8	18
17	Ultra-low density epoxy/polystyrene foam composite with high specific strength and pseudo-plastic behavior. Composites Communications, 2019, 15, 64-67.	6.3	15
18	Design of medium–temperature solid oxide fuel cells on porous supports of deformation strengthened Ni–Al alloy. Russian Journal of Electrochemistry, 2011, 47, 488-493.	0.9	14

OLEG SMORYGO

#	Article	IF	CITATIONS
19	Preparation and characterization of open-cell epoxy foams modified with carbon fibers and aluminum powder. Composite Structures, 2018, 202, 917-923.	5.8	13
20	Structured catalysts for biofuels transformation into syngas with active components based on perovskite and spinel oxides supported on Mg-doped alumina. Catalysis Today, 2017, 293-294, 176-185.	4.4	12
21	Fabrication of Thick Molybdenum Disulphide Coatings by Thermal-Diffusion Synthesis. Tribology Letters, 2004, 17, 723-726.	2.6	11
22	Design and performance of asymmetric supported membranes for oxygen and hydrogen separation. International Journal of Hydrogen Energy, 2021, 46, 20222-20239.	7.1	11
23	Design and Testing of Structured Catalysts for Internal Reforming of CH ₄ in Intermediate Temperature Solid Oxide Fuel Cells (IT SOFC). ECS Transactions, 2011, 35, 2771-2780.	0.5	10
24	Thermal-diffusion synthesis of thick molybdenum disulphide coatings on steel substrates. Surface and Coatings Technology, 2004, 180-181, 113-117.	4.8	9
25	Evaluation of SiC-porcelain ceramics as the material for monolithic catalyst supports. Journal of Advanced Ceramics, 2014, 3, 230-239.	17.4	7
26	Catalytic performance of structured packages coated with perovskite-based nanocomposite in the methane steam reforming reaction. International Journal of Hydrogen Energy, 2016, 41, 4632-4645.	7.1	7
27	An Experimental Performance Study of a Catalytic Membrane Reactor for Ethanol Steam Reforming over a Metal Honeycomb Catalyst. Membranes, 2021, 11, 790.	3.0	7
28	Novel Nanocomposite Materials Based On Praseodymium Nickelate-Cobaltite for Oxygen Separation Membranes. Materials Today: Proceedings, 2017, 4, 11351-11355.	1.8	6
29	Elimination of Composition Segregation in 33Al–45Cu–22Fe (at.%) Powder by Two-Stage High-Energy Mechanical Alloying. Materials, 2022, 15, 2087.	2.9	6
30	Effect of Asymmetric Membrane Structure on Hydrogen Transport Resistance and Performance of a Catalytic Membrane Reactor for Ethanol Steam Reforming. Membranes, 2021, 11, 332.	3.0	5
31	Pd/γ-Al2O3 catalysts on cellular supports for VOC vapor neutralization. Catalysis in Industry, 2010, 2, 387-392.	0.7	4
32	Metal Supported SOFC on the Gradient Permeable Metal Foam Substrate. Advanced Materials Research, 2010, 123-125, 1083-1086.	0.3	4
33	Open-Cell Metal–SiC Composite Foams made by Electrolytic Codeposition on Polyurethane Substrates. Powder Metallurgy and Metal Ceramics, 2014, 52, 545-550.	0.8	4
34	Macrocellular vitreous carbon with the improved mechanical strength. Frontiers of Materials Science, 2015, 9, 413-417.	2.2	4
35	Mechanical testing of CFRP materials for application as skins of sandwich composites. INCAS Bulletin, 2017, 9, 97-104.	0.6	4
36	Gradient composite metal-ceramic foam as supportive component for planar SOFCs and MIEC membranes. IOP Conference Series: Materials Science and Engineering, 2011, 23, 012023.	0.6	2

OLEG SMORYGO

#	Article	IF	CITATIONS
37	Advanced Sintering Techniques in Design of Planar IT SOFC and Supported Oxygen Separation Membranes. , 0, , .		2
38	Improving sintering kinetics and compositional homogeneity of Inconel 625 superalloy open-cell foams made by suspension impregnation method. Transactions of Nonferrous Metals Society of China, 2021, 31, 2388-2401.	4.2	2
39	Lightweight vitreous carbon material: approaches to making open-pore cellular structure. INCAS Bulletin, 2019, 11, 171-177.	0.6	2
40	Comparative Studies of Cellular Permeable Solids as Catalyst Supports. Solid State Phenomena, 0, 135, 150-153.	0.3	1
41	Steam Reforming of Methane on Ru and Pt Promoted Nanocomposites for SOFC Anodes. Materials Research Society Symposia Proceedings, 2009, 1217, 1.	0.1	1
42	Metal-Supported SOFC on Compressed Ni-Al Foam Substrates. , 2010, , .		1
43	Nanocomposite Catalysts for Steam Reforming of Methane and Biofuels: Design and Performance. , 2011, , .		1
44	Porous substrates for intermediate temperature SOFCs and in-cell reforming catalysts. Catalysis for Sustainable Energy, 2013, 1, .	0.7	1
45	Metal foam-reinforced microporous FeAlOy/FeAlx composites for catalytic applications. Materials Chemistry and Physics, 2022, 283, 126013.	4.0	1
46	Increase in the specific surface of highly porous materials with a cellular structure. Class and Ceramics (English Translation of Steklo I Keramika), 2000, 57, 132-135.	0.6	0
47	Integrated Motile Orbital Implants Based on Ceramic Foam Scaffolds: Preparation and <i>In Vivo</i> Study. Journal of Biomimetics, Biomaterials, and Tissue Engineering, 0, 13, 41-53.	0.7	0
48	Novel Nanocomposite Materials for Oxygen Separation Membranes. , 0, , .		0
49	Delamination effect on compression loadings of hybrid sandwich composite. INCAS Bulletin, 2020, 12, 229-234.	0.6	0
50	Influence of Cu foam framework on the physico-chemical properties and catalytic behavior of Cu(Fe)AlO/Cu(Fe)Al ceramometal granules in WGSR. International Journal of Hydrogen Energy, 2022, , .	7.1	0