
S Kadkhodazadeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8907616/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Droplet epitaxy symmetric InAs/InP quantum dots for quantum emission in the third telecom window: morphology, optical and electronic properties. Nanophotonics, 2022, 11, 1515-1526.	6.0	13
2	Competing oxidation mechanisms in Cu nanoparticles and their plasmonic signatures. Nanoscale, 2022, 14, 8332-8341.	5.6	5
3	Self-supported Pt–CoO networks combining high specific activity with high surface area for oxygen reduction. Nature Materials, 2021, 20, 208-213.	27.5	139
4	Initiation and Progression of Anisotropic Galvanic Replacement Reactions in a Single Ag Nanowire: Implications for Nanostructure Synthesis. ACS Applied Nano Materials, 2021, 4, 12346-12355.	5.0	6
5	Monolithic integration of InP on Si by molten alloy driven selective area epitaxial growth. Nanoscale, 2020, 12, 23780-23788.	5.6	5
6	Optical and electronic properties of low-density InAs/InP quantum-dot-like structures designed for single-photon emitters at telecom wavelengths. Physical Review B, 2020, 101, .	3.2	20
7	Electron inelastic mean free path in water. Nanoscale, 2020, 12, 20649-20657.	5.6	34
8	Aminopropylsilatrane Linkers for Easy and Fast Fabrication of High-Quality 10 nm Thick Gold Films on SiO ₂ Substrates. ACS Applied Nano Materials, 2020, 3, 4418-4427.	5.0	9
9	Rationally Designed PdAuCu Ternary Alloy Nanoparticles for Intrinsically Deactivation-Resistant Ultrafast Plasmonic Hydrogen Sensing. ACS Sensors, 2019, 4, 1424-1432.	7.8	62
10	Metal–polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection. Nature Materials, 2019, 18, 489-495.	27.5	227
11	Optical Property–Composition Correlation in Noble Metal Alloy Nanoparticles Studied with EELS. ACS Photonics, 2019, 6, 779-786.	6.6	42
12	Probing the Chemistry of Adhesion between a 316L Substrate and Spin-on-Glass Coating. Langmuir, 2018, 34, 3170-3176.	3.5	2
13	Surface enhanced Raman scattering (SERS) in the visible range on scalable aluminum-coated platforms. Chemical Communications, 2018, 54, 10638-10641.	4.1	16
14	Performance and stability of mirror coatings for the ATHENA mission. , 2018, , .		12
15	The Substrate Effect in Electron Energy-Loss Spectroscopy of Localized Surface Plasmons in Gold and Silver Nanoparticles. ACS Photonics, 2017, 4, 251-261.	6.6	22
16	Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles. Nanophotonics, 2017, 6, 289-297.	6.0	6
17	Interfacial Interaction of Oxidatively Cured Hydrogen Silsesquioxane Spin-On-Glass Enamel with Stainless Steel Substrate. Journal of the Electrochemical Society, 2017, 164, C231-C239.	2.9	5

A valence force field-Monte Carlo algorithm for quantum dot growth modeling. , 2017, , .

0

S KADKHODAZADEH

#	Article	IF	CITATIONS
19	Understanding the Thermal Stability of Silver Nanoparticles Embedded in a-Si. Journal of Physical Chemistry C, 2015, 119, 23767-23773.	3.1	16
20	Multipole plasmons and their disappearance in few-nanometre silver nanoparticles. Nature Communications, 2015, 6, 8788.	12.8	139
21	New amorphous interface for precipitate nitrides in steel. Philosophical Magazine, 2014, 94, 2339-2349.	1.6	10
22	Nonplanar nanoselective area growth of InGaAs/InP. , 2014, , .		0
23	Epitaxial growth of quantum dots on InP for device applications operating at the 1.55 μm wavelength range. , 2014, , .		5
24	Surface-enhanced Raman scattering on aluminum using near infrared and visible excitation. Chemical Communications, 2014, 50, 3744-3746.	4.1	38
25	Scaling of the Surface Plasmon Resonance in Gold and Silver Dimers Probed by EELS. Journal of Physical Chemistry C, 2014, 118, 5478-5485.	3.1	62
26	High-quality MOVPE butt-joint integration of InP/AlGaInAs/InGaAsP-based all-active optical components. Journal of Crystal Growth, 2014, 402, 243-248.	1.5	4
27	Extremely confined gap surface-plasmon modes excited by electrons. Nature Communications, 2014, 5, 4125.	12.8	72
28	Resonance Energy Transfer in Hybrid Devices in the Presence of a Surface. Journal of Physical Chemistry C, 2014, 118, 16284-16289.	3.1	2
29	Coexistence of classical and quantum plasmonics in large plasmonic structures with subnanometer gaps. Applied Physics Letters, 2013, 103, 083103.	3.3	36
30	Electron Energy Loss and One- and Two-Photon Excited SERS Probing of "Hot―Plasmonic Silver Nanoaggregates. Plasmonics, 2013, 8, 763-767.	3.4	18
31	Nanoscale Semiconductor Optical Devices. NATO Science for Peace and Security Series B: Physics and Biophysics, 2013, , 417-418.	0.3	0
32	High resolution STEM of quantum dots and quantum wires. Micron, 2013, 44, 75-92.	2.2	11
33	Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS. Nanophotonics, 2013, 2, 131-138.	6.0	178
34	Nano-selective area growth of InGaAs/InP using CBr4 in- situ etching. , 2012, , .		0
35	Metal organic vapor-phase epitaxy of InAs/InGaAsP quantum dots for laser applications at 1.5 <i>μ</i> m. Applied Physics Letters, 2011, 99, .	3.3	17
36	Quantitative strain mapping of InAs/InP quantum dots with 1 nm spatial resolution using dark field electron holography. Applied Physics Letters, 2011, 99, .	3.3	30

#	Article	IF	CITATIONS
37	Mapping boron in silicon solar cells using electron energy-loss spectroscopy. Journal of Physics: Conference Series, 2011, 326, 012052.	0.4	1
38	Towards quantitative three-dimensional characterisation of buried InAs quantum dots. Journal of Physics: Conference Series, 2011, 326, 012046.	0.4	0
39	Investigating the chemical and morphological evolution of GaAs capped InAs/InP quantum dots emitting at 1.51¼m using aberration-corrected scanning transmission electron microscopy. Journal of Crystal Growth, 2011, 329, 57-61.	1.5	4
40	Persistent template effect in InAs/GaAs quantum dot bilayers. Journal of Applied Physics, 2010, 107, .	2.5	23
41	Towards measuring bandgap inhomogeneities in InAs/GaAs quantum dots. Journal of Physics: Conference Series, 2008, 126, 012049.	0.4	4