
Tsuyoshi Murata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/890746/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organic tailored batteries materials using stable open-shell molecules with degenerate frontier orbitals. Nature Materials, 2011, 10, 947-951.	27.5	482
2	Hydrogen-Bond Interaction in Organic Conductors:  Redox Activation, Molecular Recognition, Structural Regulation, and Proton Transfer in Donorâ^'Acceptor Charge-Transfer Complexes of TTF-Imidazole. Journal of the American Chemical Society, 2007, 129, 10837-10846.	13.7	142
3	A Purely Organic Molecular Metal Based on a Hydrogen-Bonded Charge-Transfer Complex: Crystal Structure and Electronic Properties of TTF-Imidazole-p-Chloranil. Angewandte Chemie - International Edition, 2004, 43, 6343-6346.	13.8	101
4	Triple-Stranded Metallo-Helicates Addressable as Lloyd's Electron Spin Qubits. Journal of the American Chemical Society, 2010, 132, 6944-6946.	13.7	70
5	Cooperation of Hydrogen-Bond and Charge-Transfer Interactions in Molecular Complexes in the Solid State. Bulletin of the Chemical Society of Japan, 2013, 86, 183-197.	3.2	63
6	Trioxotriangulene: Air- and Thermally Stable Organic Carbon-Centered Neutral π-Radical without Steric Protection. Bulletin of the Chemical Society of Japan, 2018, 91, 922-931.	3.2	54
7	Near-infrared absorption of ï€-stacking columns composed of trioxotriangulene neutral radicals. Npj Quantum Materials, 2017, 2, .	5.2	52
8	Hydrogen-Bonded Networks in Organic Conductors:  Crystal Structures and Electronic Properties of Charge-Transfer Salts of Tetracyanoquinodimethane with 4,4â€~-Biimidazolium Having Multiprotonated States. Journal of Organic Chemistry, 2005, 70, 2739-2744.	3.2	47
9	Mixed valence salts based on carbon-centered neutral radical crystals. Communications Chemistry, 2018, 1, .	4.5	43
10	Metal-free electrocatalysts for oxygen reduction reaction based on trioxotriangulene. Communications Chemistry, 2019, 2, .	4.5	43
11	Mixed valency in organic charge transfer complexes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 139-150.	3.4	34
12	Zwitterionic Ï€-radical involving EDT-TTF-imidazole and F4TCNQ: redox properties and self-assembled structure by hydrogen-bonds and multiple Sâ∢ S interactions. Chemical Communications, 2007, , 4009.	4.1	30
13	Complex Formation between a Nucleobase and Tetracyanoquinodimethane Derivatives: Crystal Structures and Transport Properties of Charge-Transfer Solids of Cytosine. Bulletin of the Chemical Society of Japan, 2008, 81, 331-344.	3.2	30
14	Novel building blocks for crystal engineering: the first synthesis of oligo(imidazole)sElectronic supplementary information (ESI) available: synthetic procedures and characterisation details for 2, 3, 4 and 5, and X-ray crystallographic data and packing views. See http://www.rsc.org/suppdata/p1/b2/b208777d/. Journal of the Chemical Society, Perkin Transactions 1,	1.3	25
15	2002, , 2598-2600. Room-Temperature First-Order Phase Transition in a Charge-Disproportionated Molecular Conductor (MeEDO-TTF) ₂ PF ₆ . Chemistry of Materials, 2008, 20, 7551-7562.	6.7	25
16	Phenalenyl-Based Highly Conductive Molecular Systems with Hydrogen-Bonded Networks: Synthesis, Physical Properties, and Crystal Structures of 1,3- and 1,6-Diazaphenalenes, and Their Protonated Salts and Charge-Transfer Complexes with TCNQ. Bulletin of the Chemical Society of Japan, 2006, 79, 894-913.	3.2	22
17	The First Metal Complexes of 4,4′-Biimidazole and 4,4′-Biimidazolate with Hydrogen-Bonding Networks on the Cu(II) Complexes: 1-D Structures by N–H···X·ÂA·ÂA·H–N Hydrogen-Bonding. Chemistry Letters, 2004 188-189.	,B3,	21
18	Hydrogen-Bond Architectures of Protonated 4,4′-Biimidazolium Derivatives and Oligo(imidazolium)s in Charge-Transfer Salts with Tetracyanoquinodimethane. Crystal Growth and Design, 2008, 8, 3058-3065.	3.0	21

TSUYOSHI MURATA

#	Article	IF	CITATIONS
19	A Novel TTF-based Electron-donor with Imidazole-annelation Having Hydrogen-bonding and Proton-transfer Abilities. Chemistry Letters, 2008, 37, 24-25.	1.3	20
20	Pluri-dimensional hydrogen-bonded networks of novel thiophene-introduced oligo(imidazole)s and physical properties of their charge-transfer complexes with TCNQ. Tetrahedron, 2005, 61, 6056-6063.	1.9	18
21	Syntheses, Redox Properties, Self-Assembled Structures, and Charge-Transfer Complexes of Imidazole- and Benzimidazole-Annelated Tetrathiafulvalene Derivatives. Bulletin of the Chemical Society of Japan, 2013, 86, 927-939.	3.2	18
22	Proton-transfer salts between an EDT-TTF derivative having imidazole-ring and anilic acids: multi-dimensional networks by acid–base hydrogen-bonds, π-stacks and chalcogen atom interactions. CrystEngComm, 2011, 13, 3689.	2.6	17
23	Multidimensional Networks of π-Conjugated Oligomers:  Crystal Structures of 4,4â€~:2â€~,2â€~ â€~:4â€~ â€~,4â€~â€~‰â€~ã€~-Quaterimidazole in Hydrate, Protonated Salt, and Dinucle Growth and Design, 2006, 6, 1043-1047.	eic3Coppe	r Ctomplexes.
24	Organic Conductor Based on Nucleobase: Structural and Electronic Properties of a Charge-Transfer Solid Composed of TCNQ Anion Radical and Hemiprotonated Cytosine. Molecular Crystals and Liquid Crystals, 2007, 466, 101-112.	0.9	16
25	Formation of two-dimensional metals by weak intermolecular interactions based on the asymmetric EDO-TTF derivatives. Journal of Materials Chemistry, 2008, 18, 2131.	6.7	16
26	Tetrathiafulvaleneâ€Type Electron Donors Bearing Biimidazole Moieties: Multifunctional Units with Hydrogen Bonding Abilities. European Journal of Organic Chemistry, 2012, 2012, 4123-4129.	2.4	16
27	Solutionâ€Stable Triple Helicates of Quaterimidazole: Threeâ€Dimensional Crystal Structures and Optical Resolution by Chiralâ€Column HPLC. European Journal of Inorganic Chemistry, 2011, 2011, 3438-3445.	2.0	15
28	Dynamic Nuclear Polarization using Photoexcited Triplet Electron Spins in Eutectic Mixtures. Journal of Physical Chemistry A, 2018, 122, 9670-9675.	2.5	15
29	Properties of Reaction Products between Cytosine and F4TCNQ in MeOH: Two Hemiprotonated Cytosine Salts with F4TCNQ Radical Anion and Methoxy Adduct Anion. Chemistry Letters, 2006, 35, 1342-1343.	1.3	14
30	Exploration of charge-transfer complexes of a nucleobase: Crystal structure and properties of cytosine–Et2TCNQ salt. Solid State Sciences, 2008, 10, 1364-1368.	3.2	14
31	Tuning of Multi-Instabilities in Organic Alloy, [(EDO-TTF) _{1â^'<i>x</i>} (MeEDO-TTF) _{<i>x</i>}] ₂ PF ₆ . Chemistry of Materials, 2010, 22, 3121-3132.	6.7	14
32	Hydrogen-bonded networks of 2,2′-substituted 4,4′-biimidazoles: New ligands for the assembled metal complexes. Polyhedron, 2005, 24, 2625-2631.	2.2	13
33	Supramolecular Architectures and Hydrogen-Bond Directionalities of 4,4′-Biimidazole Metal Complexes Depending on Coordination Geometries. Crystal Growth and Design, 2010, 10, 4898-4905.	3.0	13
34	Development of Organic Conductors with Self-Assembled Architectures of Biomolecules: Synthesis and Crystal Structures of Nucleobase-Functionalized Tetrathiafulvalene Derivatives. Bulletin of the Chemical Society of Japan, 2012, 85, 995-1006.	3.2	13
35	High-field NMR with dissolution triplet-DNP. Journal of Magnetic Resonance, 2019, 309, 106623.	2.1	13
36	Air-Stable Thin Films with High and Anisotropic Electrical Conductivities Composed of a Carbon-Centered Neutral π-Radical. ACS Omega, 2019, 4, 17569-17575.	3.5	13

TSUYOSHI MURATA

#	Article	IF	CITATIONS
37	Colored Ionic Liquid Based on Stable Polycyclic Anion Salt Showing Halochromism with HCl Vapor. Organic Letters, 2019, 21, 2161-2165.	4.6	12
38	Single-component organic conductors based on neutral betainic radicals of N-methyl substituted dioxo- and aminooxo-pyrimido-fused TTFs. Synthetic Metals, 2008, 158, 497-505.	3.9	11
39	Redox-active tubular frameworks with TTF: self-assemblies by complementary hydrogen-bonds and ï€-stacks of TTF-phenyluracil. CrystEngComm, 2011, 13, 6880.	2.6	11
40	Synthesis of Trioxotriangulene Stable Neutral π-Radicals Having Alkyl Substituent Groups, and Their Effects on Electronic-spin and π-Stacking Structures. Chemistry Letters, 2020, 49, 95-98.	1.3	11
41	2D Coordination Network of Trioxotriangulene with Multiple Redox Abilities and Its Rechargeable Battery Performance. International Journal of Molecular Sciences, 2020, 21, 4723.	4.1	10
42	High Capacity and Energy Density Organic Lithiumâ€ŀon Battery Based on Buckypaper with Stable Ï€â€Radical. ChemSusChem, 2021, 14, 1377-1387.	6.8	10
43	Synthesis, crystal structure, and properties of a new hydrogen-bonded electron-donor: 1,6-Dithiapyrene-imidazole. Solid State Sciences, 2008, 10, 1720-1723.	3.2	9
44	Modulation of charge-transfer complexes assisted by complementary hydrogen bonds of nucleobases: TCNQ complexes of a uracil-substituted EDO-TTF. CrystEngComm, 2012, 14, 6881.	2.6	9
45	Intramolecular Magnetic Interaction of Spinâ€Delocalized Neutral Radicals through <i>m</i> â€Phenylene Spacers. ChemPlusChem, 2019, 84, 680-685.	2.8	9
46	The first TTF derivatives with imidazole moieties for hydrogen-bonded charge-transfer complexes. Synthetic Metals, 2003, 135-136, 579-580.	3.9	8
47	Trioxotriangulene with carbazole: a donor–acceptor molecule showing strong near-infrared absorption exceeding 1000 nm. Organic Chemistry Frontiers, 2019, 6, 3107-3115.	4.5	8
48	1,3-Diazaphenalenes: a new donor system for hydrogen-bonded charge-transfer complexes. Synthetic Metals, 2003, 135-136, 657-658.	3.9	7
49	Crystal structure and properties of charge-transfer complex of N-butylguanine and FTCNQ. Synthetic Metals, 2009, 159, 2375-2377.	3.9	7
50	Intermolecular Hydrogen-Bond Networks and Physical Properties of BF ₄ [–] and TCNQ ^{•–} Salts of Three-Fold Symmetric Tris(alkylamino)phenalenyliums. Crystal Growth and Design, 2012, 12, 804-810.	3.0	7
51	Exploration of Charge-Transfer Solids Utilizing Nucleobases: Nanoarchitectures by Hydrogen-Bonds in the Ionic Assemblies of Guanine and TCNQ Derivatives. Crystal Growth and Design, 2013, 13, 2778-2792.	3.0	7
52	Synthesis and Physical Properties of Trioxotriangulene Having Methoxy and Hydroxy Groups at α-Positions: Electronic and Steric Effects of Substituent Groups and Intramolecular Hydrogen Bonds. Journal of Organic Chemistry, 2021, 86, 10154-10165.	3.2	7
53	Synthesis, crystal structure, and charge-transfer complexes of TTF derivatives having two imidazole hydrogen-bonding units. Physica B: Condensed Matter, 2010, 405, S41-S44.	2.7	5
54	High-pressure transport study of a charge-transfer salt based on cytosine and TCNQ using a diamond anvil cell. Journal of Physics: Conference Series, 2008, 132, 012011.	0.4	4

Tsuyoshi Murata

#	Article	IF	CITATIONS
55	Nucleobase-Functionalized 1,6-Dithiapyrene-Type Electron-Donors: Supramolecular Assemblies by Complementary Hydrogen-Bonds and i€-Stacks. Crystal Growth and Design, 2012, 12, 5815-5822.	3.0	4
56	Rechargeable Batteries with 100% Cathode Active Materials─Conductive Vapor-Deposited Films of a Stable Organic Neutral Radical. ACS Applied Energy Materials, 2022, 5, 1218-1225.	5.1	4
57	A Redoxâ€Active Microporous Organosiloxane Containing a Stable Neutral Radical, Trioxotriangulene. Chemistry - A European Journal, 2022, 28, .	3.3	3
58	Novel Oligoimidazoles for Hydrogen-bonded Charge-Transfer Complexes. Molecular Crystals and Liquid Crystals, 2002, 379, 83-88.	0.9	2
59	Hydrogen-Bonded Structure of 2:1 TCNQ Salt of 2-Methyl-5-Phenyl-7,9-Dichloro-1,6-Diazaphenalene. Journal of Low Temperature Physics, 2007, 142, 425-428.	1.4	2
60	Structural Properties and Degree of Intramolecular Charge Transfer of an <i>N</i> -Alkyl Indoline–Tricyanoquinodimethane System. Bulletin of the Chemical Society of Japan, 2008, 81, 869-884.	3.2	2
61	Design and Synthesis of a <i>C</i> ₃ Symmetrical Phenalenyl Derivative with Three Oxo Groups by Regioselective Deoxygenation/Oxygenation. Organic Letters, 2022, 24, 1033-1037.	4.6	2
62	Hydrogen-bonded charge-transfer complexes of TTFs containing nucleobase or imidazole moiety. European Physical Journal Special Topics, 2004, 114, 471-474.	0.2	1
63	Crystal Structures, Degree of Charge Transfer, and Non-Linear Optical Characteristics of Intramolecular Charge-Transfer Compounds: Indoline-Substituted Tricyanoquinodimethanes. Bulletin of the Chemical Society of Japan, 2008, 81, 1131-1146.	3.2	1
64	Metal–insulator transition of alloyed radical cation salts, (Me EDO-TTF)2PF6. Physica B: Condensed Matter, 2010, 405, S45-S48.	2.7	1
65	Phase transition behavior in the mixed crystal of pristine and mono-methyl substituted EDO-TTF. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1155-1157.	0.8	1
66	Development of Conducting Charge-Transfer Complexes Based on Cooperation of Hydrogen-Bond and Charge-Transfer Interactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 318-329.	0.1	1
67	Novel Building Blocks for Crystal Engineering: The First Synthesis of Oligo(imidazole)s ChemInform, 2003, 34, no.	0.0	0
68	Erratum to "Exploration of charge-transfer complexes of a nucleobase: Crystal structure and properties of cytosine-Et2TCNQ salt―[Solid State Sciences 10 (2008) 1364–1368]. Solid State Sciences, 2008, 10, 1820.	3.2	0
69	Charge-Transfer Complexes between Indoline–Tricyanoquinodimethane Compounds and 7,7,8,8-Tetracyanoquinodimethane. Bulletin of the Chemical Society of Japan, 2008, 81, 1492-1499.	3.2	0
70	Cytosine-fused TTF: Conducting property of single-component betainic radical and self-assembling ability of hemi-deprotonated cytosine pair. Molecular Crystals and Liquid Crystals, 0, , 1-12.	0.9	0
71	Molecular Conductors and Superconductors. Special Publication - Royal Society of Chemistry, 2007, , 1-104.	0.0	0
72	Design and Synthesis of Functional Molecular Materials. Special Publication - Royal Society of Chemistry, 2007, , 105-150.	0.0	0