
Jan Dierk Grunwaldt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8907220/publications.pdf Version: 2024-02-01

IAN DIERK CRIINIMALDT

#	Article	IF	CITATIONS
1	A review of catalytic upgrading of bio-oil to engine fuels. Applied Catalysis A: General, 2011, 407, 1-19.	2.2	1,414
2	In Situ Investigations of Structural Changes in Cu/ZnO Catalysts. Journal of Catalysis, 2000, 194, 452-460.	3.1	523
3	Preparation of Supported Gold Catalysts for Low-Temperature CO Oxidation via "Size-Controlled― Gold Colloids. Journal of Catalysis, 1999, 181, 223-232.	3.1	416
4	Screening of Catalysts for Hydrodeoxygenation of Phenol as a Model Compound for Bio-oil. ACS Catalysis, 2013, 3, 1774-1785.	5.5	348
5	Comparative Study of Au/TiO2 and Au/ZrO2 Catalysts for Low-Temperature CO Oxidation. Journal of Catalysis, 1999, 186, 458-469.	3.1	322
6	Future Challenges in Heterogeneous Catalysis: Understanding Catalysts under Dynamic Reaction Conditions. ChemCatChem, 2017, 9, 17-29.	1.8	304
7	Gold/Titania Interfaces and Their Role in Carbon Monoxide Oxidation. Journal of Physical Chemistry B, 1999, 103, 1002-1012.	1.2	252
8	The adhesion and shape of nanosized Au particles in a Au/TiO2 catalyst. Journal of Catalysis, 2004, 225, 86-94.	3.1	240
9	X-ray absorption spectroscopy under reaction conditions: suitability of different reaction cells for combined catalyst characterization and time-resolved studies. Physical Chemistry Chemical Physics, 2004, 6, 3037.	1.3	225
10	Tracking the formation, fate and consequence for catalytic activity of Pt single sites on CeO2. Nature Catalysis, 2020, 3, 824-833.	16.1	209
11	Tuning the Structure of Platinum Particles on Ceria Inâ€Situ for Enhancing the Catalytic Performance of Exhaust Gas Catalysts. Angewandte Chemie - International Edition, 2017, 56, 13078-13082.	7.2	201
12	CO hydrogenation to methanol on Cu–Ni catalysts: Theory and experiment. Journal of Catalysis, 2012, 293, 51-60.	3.1	195
13	Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis. Progress in Energy and Combustion Science, 2018, 68, 268-309.	15.8	194
14	Hard and soft X-ray microscopy and tomography in catalysis: bridging the different time and length scales. Chemical Society Reviews, 2010, 39, 4741.	18.7	165
15	Combining XRD and EXAFS with on-Line Catalytic Studies for in situ Characterization of Catalysts. Topics in Catalysis, 2002, 18, 37-43.	1.3	162
16	Sunlight induced photo-thermal synergistic catalytic CO ₂ conversion <i>via</i> localized surface plasmon resonance of MoO _{3â^'x} . Journal of Materials Chemistry A, 2019, 7, 2821-2830.	5.2	161
17	Substrate Size‣elective Catalysis with Zeoliteâ€Encapsulated Gold Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 3504-3507.	7.2	160
18	Tuning the Pt/CeO ₂ Interface by in Situ Variation of the Pt Particle Size. ACS Catalysis, 2018, 8, 4800-4811.	5.5	157

#	Article	IF	CITATIONS
19	2D-Mapping of the Catalyst Structure Inside a Catalytic Microreactor at Work:Â Partial Oxidation of Methane over Rh/Al2O3. Journal of Physical Chemistry B, 2006, 110, 8674-8680.	1.2	150
20	Potential of an Alumina-Supported Ni ₃ Fe Catalyst in the Methanation of CO ₂ : Impact of Alloy Formation on Activity and Stability. ACS Catalysis, 2017, 7, 6802-6814.	5.5	150
21	Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles. Journal of Nanoparticle Research, 2006, 8, 783-796.	0.8	149
22	lmaging Catalysts at Work: A Hierarchical Approach from the Macro―to the Meso―and Nanoâ€scale. ChemCatChem, 2013, 5, 62-80.	1.8	143
23	Methanation of CO2: Structural response of a Ni-based catalyst under fluctuating reaction conditions unraveled by operando spectroscopy. Journal of Catalysis, 2015, 327, 48-53.	3.1	143
24	Internal steam reforming in solid oxide fuel cells: Status and opportunities of kinetic studies and their impact on modelling. Journal of Power Sources, 2011, 196, 25-38.	4.0	139
25	Facile synthesis of surface N-doped Bi2O2CO3: Origin of visible light photocatalytic activity and in situ DRIFTS studies. Journal of Hazardous Materials, 2016, 307, 163-172.	6.5	138
26	Structure–activity relationships of Pt/Al2O3 catalysts for CO and NO oxidation at diesel exhaust conditions. Applied Catalysis B: Environmental, 2012, 126, 315-325.	10.8	136
27	Confined‧pace Alloying of Nanoparticles for the Synthesis of Efficient PtNi Fuelâ€Cell Catalysts. Angewandte Chemie - International Edition, 2014, 53, 14250-14254.	7.2	136
28	In situ formation of ZnOx species for efficient propane dehydrogenation. Nature, 2021, 599, 234-238.	13.7	133
29	Supercritical Fluids in Catalysis: Opportunities of In Situ Spectroscopic Studies and Monitoring Phase Behavior. Catalysis Reviews - Science and Engineering, 2003, 45, 1-96.	5.7	132
30	Stabilizing Cu ⁺ in Cu/SiO ₂ Catalysts with a Shattuckite-Like Structure Boosts CO ₂ Hydrogenation into Methanol. ACS Catalysis, 2020, 10, 14694-14706.	5.5	129
31	Flexibility and Sorption Selectivity in Rigid Metal–Organic Frameworks: The Impact of Etherâ€Functionalised Linkers. Chemistry - A European Journal, 2010, 16, 14296-14306.	1.7	128
32	Selective Catalytic Reduction of NO Over Fe-ZSM-5: Mechanistic Insights by Operando HERFD-XANES and Valence-to-Core X-ray Emission Spectroscopy. Journal of the American Chemical Society, 2014, 136, 13006-13015.	6.6	128
33	Influence on nickel particle size on the hydrodeoxygenation of phenol over Ni/SiO 2. Catalysis Today, 2016, 259, 277-284.	2.2	126
34	Intermetallic GaPd ₂ Nanoparticles on SiO ₂ for Low-Pressure CO ₂ Hydrogenation to Methanol: Catalytic Performance and In Situ Characterization. ACS Catalysis, 2015, 5, 5827-5836.	5.5	125
35	One-Step Synthesis of Submicrometer Fibers of MoO3. Chemistry of Materials, 2004, 16, 1126-1134.	3.2	120
36	Oxidic or Metallic Palladium:Â Which Is the Active Phase in Pd-Catalyzed Aerobic Alcohol Oxidation?. Journal of Physical Chemistry B, 2006, 110, 25586-25589.	1.2	120

#	Article	IF	CITATIONS
37	Mn(III)(salen)-catalyzed synthesis of cyclic organic carbonates from propylene and styrene oxide in "supercritical―CO2. Journal of Molecular Catalysis A, 2008, 279, 94-103.	4.8	118
38	Quasi-Homogeneous Methanol Synthesis Over Highly Active Copper Nanoparticles. Angewandte Chemie - International Edition, 2005, 44, 7978-7981.	7.2	117
39	Selective liquid-phase oxidation of alcohols catalyzed by a silver-based catalyst promoted by the presence of ceria. Journal of Catalysis, 2009, 266, 320-330.	3.1	115
40	Catalytic hydrodeoxygenation of guaiacol over platinum supported on metal oxides and zeolites. Applied Catalysis A: General, 2015, 490, 181-192.	2.2	112
41	Aerobic Epoxidation of Olefins Catalyzed by the Cobaltâ€Based Metal–Organic Framework STAâ€12(Co). Chemistry - A European Journal, 2012, 18, 887-898.	1.7	110
42	Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol. Journal of Catalysis, 2014, 320, 77-88.	3.1	110
43	Insight into the structure of supported palladium catalysts during the total oxidation of methane. Chemical Communications, 2007, , 4635.	2.2	109
44	The role of monomeric iron during the selective catalytic reduction of NOx by NH3 over Fe-BEA zeolite catalysts. Applied Catalysis B: Environmental, 2009, 93, 166-176.	10.8	109
45	Promoted Ru?hydroxyapatite: designed structure for the fast and highly selective oxidation of alcohols with oxygen. Journal of Catalysis, 2005, 230, 406-419.	3.1	108
46	Flame-made Alumina Supported Pd–Pt Nanoparticles: Structural Properties and Catalytic Behavior in Methane Combustion. Catalysis Letters, 2005, 104, 9-16.	1.4	108
47	Gold-Catalyzed Aerobic Oxidation of Benzyl Alcohol: Effect of Gold Particle Size on Activity and Selectivity in Different Solvents. Catalysis Letters, 2008, 125, 169-176.	1.4	108
48	In Situ Attenuated Total Reflection Infrared Spectroscopy of Imidazolium-Based Room-Temperature Ionic Liquids under "Supercritical―CO ₂ . Journal of Physical Chemistry B, 2009, 113, 114-122.	1.2	107
49	Interplay of Pt and Crystal Facets of TiO ₂ : CO Oxidation Activity and <i>Operando</i> XAS/DRIFTS Studies. ACS Catalysis, 2016, 6, 7799-7809.	5.5	107
50	Operando X-ray absorption spectroscopy studies on Pd-SnO2 based sensors. Physical Chemistry Chemical Physics, 2009, 11, 8620.	1.3	105
51	An Au clusters related spill-over sensitization mechanism in SnO2-based gas sensors identified by operando HERFD-XAS, work function changes, DC resistance and catalytic conversion studies. Physical Chemistry Chemical Physics, 2012, 14, 13249.	1.3	105
52	Surface reaction kinetics of methane oxidation over PdO. Journal of Catalysis, 2019, 370, 152-175.	3.1	105
53	On the mechanism of the SCR reaction on Fe/HBEA zeolite. Applied Catalysis B: Environmental, 2009, 93, 185-193.	10.8	103
54	Structural snapshots of the SCR reaction mechanism on Cu-SSZ-13. Chemical Communications, 2015, 51, 9227-9230.	2.2	101

#	Article	IF	CITATIONS
55	Studying the Solvothermal Formation of MoO3 Fibers by Complementary In Situ EXAFS/EDXRD Techniques. Angewandte Chemie - International Edition, 2005, 44, 5643-5647.	7.2	100
56	Activity and stability of Mo2C/ZrO2 as catalyst for hydrodeoxygenation of mixtures of phenol and 1-octanol. Journal of Catalysis, 2015, 328, 208-215.	3.1	100
57	Identification of the Active Species Generated from Supported Pd Catalysts in Heck Reactions: An in situ Quick Scanning EXAFS Investigation. Journal of the American Chemical Society, 2011, 133, 3921-3930.	6.6	97
58	In situ spectroscopic investigation of heterogeneous catalysts and reaction media at high pressure. Physical Chemistry Chemical Physics, 2005, 7, 3526.	1.3	96
59	Decreased CO production in methanol steam reforming over Cu/ZrO2 catalysts prepared by the microemulsion technique. Applied Catalysis A: General, 2006, 302, 215-223.	2.2	94
60	The Structure and Behavior of Platinum in SnO ₂ â€Based Sensors under Working Conditions. Angewandte Chemie - International Edition, 2011, 50, 2841-2844.	7.2	94
61	Influence of gas composition on activity and durability of bimetallic Pd-Pt/Al2O3 catalysts for total oxidation of methane. Catalysis Today, 2015, 258, 470-480.	2.2	93
62	A review of catalyst performance and novel reaction engineering concepts in direct synthesis of hydrogen peroxide. Catalysis Today, 2015, 248, 149-159.	2.2	93
63	Supported gold- and silver-based catalysts for the selective aerobic oxidation of 5-(hydroxymethyl)furfural to 2,5-furandicarboxylic acid and 5-hydroxymethyl-2-furancarboxylic acid. Green Chemistry, 2018, 20, 3530-3541.	4.6	93
64	In Situ EXAFS Study of Rh/Al2O3 Catalysts for Catalytic Partial Oxidation of Methane. Journal of Catalysis, 2001, 200, 321-329.	3.1	91
65	Mapping the chemical states of an element inside a sample using tomographic x-ray absorption spectroscopy. Applied Physics Letters, 2003, 82, 3360-3362.	1.5	89
66	Platinum loaded tin dioxide: a model system for unravelling the interplay between heterogeneous catalysis and gas sensing. Journal of Materials Chemistry A, 2018, 6, 2034-2046.	5.2	88
67	Synthesis of Î ³ -valerolactone by hydrogenation of levulinic acid over supported nickel catalysts. Applied Catalysis A: General, 2015, 502, 18-26.	2.2	87
68	CAT-ACT—A new highly versatile x-ray spectroscopy beamline for catalysis and radionuclide science at the KIT synchrotron light facility ANKA. Review of Scientific Instruments, 2017, 88, 113113.	0.6	87
69	Operando spatially and time-resolved X-ray absorption spectroscopy and infrared thermography during oscillatory CO oxidation. Journal of Catalysis, 2015, 328, 216-224.	3.1	86
70	Combined liquid-phase ATR-IR and XAS study of the Bi-promotion in the aerobic oxidation of benzyl alcohol over Pd/Al2O3. Journal of Catalysis, 2007, 252, 77-87.	3.1	85
71	Catalysts at work: From integral to spatially resolved X-ray absorption spectroscopy. Catalysis Today, 2009, 145, 267-278.	2.2	85
72	Interplay Between Size and Crystal Structure of Molybdenum Dioxide Nanoparticles—Synthesis, Growth Mechanism, and Electrochemical Performance. Small, 2011, 7, 377-387.	5.2	85

#	Article	IF	CITATIONS
73	The State of Cu Promoter Atoms in High-Temperature Shift Catalysts—An in Situ Fluorescence XAFS Study. Journal of Catalysis, 2001, 198, 56-65.	3.1	84
74	Formation and stability of barium aluminate and cerate in NOx storage-reduction catalysts. Applied Catalysis B: Environmental, 2006, 63, 232-242.	10.8	83
75	Exhaust Gas Aftertreatment in Mobile Systems: Status, Challenges, and Perspectives. Chemie-Ingenieur-Technik, 2013, 85, 595-617.	0.4	83
76	Supported gold catalysts for CO oxidation: Effect of calcination on structure, adsorption and catalytic behaviour. Physical Chemistry Chemical Physics, 2001, 3, 3846-3855.	1.3	81
77	In situ EXAFS study on the oxidation state of Pd/Al2O3 and Bi–Pd/Al2O3 during the liquid-phase oxidation of 1-phenylethanol. Journal of Catalysis, 2004, 222, 268-280.	3.1	81
78	Nextâ€Generation Catalysis for Renewables: Combining Enzymatic with Inorganic Heterogeneous Catalysis for Bulk Chemical Production. ChemCatChem, 2010, 2, 249-258.	1.8	81
79	Phase- and Surface Composition-Dependent Electrochemical Stability of Ir-Ru Nanoparticles during Oxygen Evolution Reaction. ACS Catalysis, 2021, 11, 9300-9316.	5.5	79
80	One step flame-made fluorinated Pt/TiO2 photocatalysts for hydrogen production. Applied Catalysis B: Environmental, 2014, 160-161, 144-151.	10.8	77
81	Photothermal Catalysis over Nonplasmonic Pt/TiO ₂ Studied by Operando HERFD-XANES, Resonant XES, and DRIFTS. ACS Catalysis, 2018, 8, 11398-11406.	5.5	76
82	The dynamic nature of Cu sites in Cu-SSZ-13 and the origin of the seagull NO _x conversion profile during NH ₃ -SCR. Reaction Chemistry and Engineering, 2019, 4, 1000-1018.	1.9	75
83	Increased Ir–Ir Interaction in Iridium Oxide during the Oxygen Evolution Reaction at High Potentials Probed by Operando Spectroscopy. ACS Catalysis, 2021, 11, 10043-10057.	5.5	75
84	Heterogeneous Catalytic Hydrogenation in Supercritical Fluids: Potential and Limitations. Industrial & Engineering Chemistry Research, 2008, 47, 4561-4585.	1.8	74
85	<i>Operando</i> Spatially- and Time-Resolved XAS Study on Zeolite Catalysts for Selective Catalytic Reduction of NO _{<i>x</i>} by NH ₃ . Journal of Physical Chemistry C, 2014, 118, 10204-10212.	1.5	74
86	A simple discrimination of the promoter effect in alcohol oxidation and dehydrogenation over platinum and palladium. Journal of Catalysis, 2004, 225, 138-146.	3.1	72
87	Flame-Made Pt/Ceria/Zirconia for Low-Temperature Oxygen Exchange. Chemistry of Materials, 2005, 17, 3352-3358.	3.2	72
88	High-throughput screening under demanding conditions: Cu/ZnO catalysts in high pressure methanol synthesis as an example. Journal of Catalysis, 2003, 216, 110-119.	3.1	71
89	Revealing the Structure and Mechanism of Palladium during Direct Synthesis of Hydrogen Peroxide in Continuous Flow Using Operando Spectroscopy. ACS Catalysis, 2018, 8, 2546-2557.	5.5	71
90	Combination of flame synthesis and high-throughput experimentation: The preparation of alumina-supported noble metal particles and their application in the partial oxidation of methane. Applied Catalysis A: General, 2007, 316, 226-239.	2.2	70

#	Article	IF	CITATIONS
91	Flame-synthesized LaCoO3-supported Pd1. Structure, thermal stability and reducibility. Journal of Catalysis, 2007, 252, 127-136.	3.1	70
92	Distinct spatial changes of the catalyst structure inside a fixed-bed microreactor during the partial oxidation of methane over Rh/Al2O3. Catalysis Today, 2007, 126, 54-63.	2.2	70
93	Stability and resistance of nickel catalysts for hydrodeoxygenation: carbon deposition and effects of sulfur, potassium, and chlorine in the feed. Catalysis Science and Technology, 2014, 4, 3672-3686.	2.1	69
94	Gold-Loaded Tin Dioxide Gas Sensing Materials: Mechanistic Insights and the Role of Gold Dispersion. ACS Sensors, 2016, 1, 1322-1329.	4.0	67
95	Recent Advances in Selective Propylene Oxidation over Bismuth Molybdate Based Catalysts: Synthetic, Spectroscopic, and Theoretical Approaches. ACS Catalysis, 2017, 7, 5628-5642.	5.5	67
96	Benzyl alcoholoxidation in supercritical carbon dioxide: spectroscopic insight into phase behaviour and reaction mechanism. Physical Chemistry Chemical Physics, 2005, 7, 278-285.	1.3	66
97	Electron microscopy and EXAFS studies on oxide-supported gold–silver nanoparticles prepared by flame spray pyrolysis. Applied Surface Science, 2006, 252, 7862-7873.	3.1	66
98	Sulfur poisoning and regeneration of bimetallic Pd-Pt methane oxidation catalysts. Applied Catalysis B: Environmental, 2017, 218, 833-843.	10.8	66
99	Supercritical Carbon Dioxide:  An Inert Solvent for Catalytic Hydrogenation?. Journal of Physical Chemistry B, 2005, 109, 16794-16800.	1.2	65
100	Origin of the Normal and Inverse Hysteresis Behavior during CO Oxidation over Pt/Al ₂ O ₃ . ACS Catalysis, 2017, 7, 343-355.	5.5	65
101	High pressurein situx-ray absorption spectroscopy cell for studying simultaneously the liquid phase and the solid/liquid interface. Review of Scientific Instruments, 2005, 76, 054104.	0.6	64
102	Hydrothermal Formation of W/Mo-Oxides: A Multidisciplinary Study of Growth and Shape. Chemistry of Materials, 2008, 20, 3022-3033.	3.2	64
103	Behavior of homogeneous and immobilized zinc-based catalysts in cycloaddition of CO2 to propylene oxide. Journal of Catalysis, 2005, 234, 256-267.	3.1	62
104	Deactivation of Ni-MoS2 by bio-oil impurities during hydrodeoxygenation of phenol and octanol. Applied Catalysis A: General, 2016, 523, 159-170.	2.2	62
105	Elucidating the Nature of Active Sites and Fundamentals for their Creation in Zn-Containing ZrO ₂ –Based Catalysts for Nonoxidative Propane Dehydrogenation. ACS Catalysis, 2020, 10, 8933-8949.	5.5	62
106	Operando Raman spectroscopy on CO2 methanation over alumina-supported Ni, Ni3Fe and NiRh0.1 catalysts: Role of carbon formation as possible deactivation pathway. Applied Catalysis A: General, 2018, 556, 160-171.	2.2	61
107	Palladium Supported on an Acidic Resin: A Unique Bifunctional Catalyst for the Continuous Catalytic Hydrogenation of Organic Compounds in Supercritical Carbon Dioxide. Advanced Synthesis and Catalysis, 2008, 350, 691-705.	2.1	60
108	Visualizing a Catalyst at Work during the Ignition of the Catalytic Partial Oxidation of Methane. Journal of Physical Chemistry C, 2009, 113, 3037-3040.	1.5	60

#	Article	IF	CITATIONS
109	Inâ€Situ Observation of Cu–Ni Alloy Nanoparticle Formation by Xâ€Ray Diffraction, Xâ€Ray Absorption Spectroscopy, and Transmission Electron Microscopy: Influence of Cu/Ni Ratio. ChemCatChem, 2014, 6, 301-310.	1.8	60
110	High pressure view-cell for simultaneousin situinfrared spectroscopy and phase behavior monitoring of multiphase chemical reactions. Review of Scientific Instruments, 2003, 74, 4121-4128.	0.6	59
111	The Effect of Prereduction on the Performance of Pd/Al ₂ O ₃ and Pd/CeO ₂ Catalysts during Methane Oxidation. Industrial & Engineering Chemistry Research, 2019, 58, 12561-12570.	1.8	58
112	Unravelling the Different Reaction Pathways for Low Temperature CO Oxidation on Pt/CeO ₂ and Pt/Al ₂ O ₃ by Spatially Resolved Structure–Activity Correlations. Journal of Physical Chemistry Letters, 2019, 10, 7698-7705.	2.1	58
113	In situ EXAFS study of Pd/Al2O3 during aerobic oxidation ofÂcinnamyl alcohol in an organic solvent. Journal of Catalysis, 2003, 213, 291-295.	3.1	57
114	Flame-synthesized LaCoO3-supported Pd2. Catalytic behavior in the reduction of NO by H2 under lean conditions. Journal of Catalysis, 2007, 252, 137-147.	3.1	57
115	PGM based catalysts for exhaust-gas after-treatment under typical diesel, gasoline and gas engine conditions with focus on methane and formaldehyde oxidation. Applied Catalysis B: Environmental, 2020, 265, 118571.	10.8	56
116	Continuous catalytic oxidation of solid alcohols in supercritical CO2: A parametric and spectroscopic study of the transformation of cinnamyl alcohol over Pd/Al2O3. Journal of Catalysis, 2006, 240, 126-136.	3.1	55
117	Surface Oxidation of Supported Ni Particles and Its Impact on the Catalytic Performance during Dynamically Operated Methanation of CO2. Catalysts, 2017, 7, 279.	1.6	55
118	Morphological and Kinetic Studies on Hexagonal Tungstates. Chemistry of Materials, 2007, 19, 185-197.	3.2	54
119	Role of Bi promotion and solvent in platinum-catalyzed alcohol oxidation probed by in situ X-ray absorption and ATR-IR spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 5307.	1.3	54
120	Chemical gradients in automotive Cu-SSZ-13 catalysts for NOx removal revealed by operando X-ray spectrotomography. Nature Catalysis, 2021, 4, 46-53.	16.1	54
121	In Situ Extended X-ray Absorption Fine Structure Study during Selective Alcohol Oxidation over Pd/Al2O3in Supercritical Carbon Dioxide. Journal of Physical Chemistry B, 2006, 110, 9916-9922.	1.2	53
122	Identification of the iron oxidation state and coordination geometry in iron oxide- and zeolite-based catalysts using pre-edge XAS analysis. Journal of Synchrotron Radiation, 2015, 22, 410-426.	1.0	53
123	Microfluidically synthesized Au, Pd and AuPd nanoparticles supported on SnO2 for gas sensing applications. Sensors and Actuators B: Chemical, 2019, 292, 48-56.	4.0	53
124	Selective oxidation of benzyl alcohol to benzaldehyde in "supercritical―carbon dioxide. Catalysis Today, 2004, 91-92, 1-5.	2.2	52
125	Exploiting Synergies in Catalysis and Gas Sensing using Noble Metal‣oaded Oxide Composites. ChemCatChem, 2018, 10, 864-880.	1.8	50
126	Gold supported on Cu–Mg–Al and Cu–Ce mixed oxides: An in situ XANES study on the state of Au during aerobic alcohol oxidation. Journal of Catalysis, 2007, 250, 313-323.	3.1	49

#	Article	IF	CITATIONS
127	A versatilein situspectroscopic cell for fluorescence/transmission EXAFS and X-ray diffraction of heterogeneous catalysts in gas and liquid phase. Journal of Synchrotron Radiation, 2007, 14, 345-354.	1.0	49
128	The nature of the active site in the Fe-ZSM-5/N2O system studied by (resonant) inelastic X-ray scattering. Catalysis Today, 2007, 126, 127-134.	2.2	49
129	Understanding sulfur poisoning of bimetallic Pd-Pt methane oxidation catalysts and their regeneration. Applied Catalysis B: Environmental, 2020, 278, 119244.	10.8	49
130	Simple preparation routes towards novel Zn-based catalysts for the solventless synthesis of propylene carbonate using dense carbon dioxide. Journal of Molecular Catalysis A, 2006, 258, 165-171.	4.8	48
131	Gold-catalyzed aerobic oxidation of dibenzylamine: Homogeneous or heterogeneous catalysis?. Journal of Molecular Catalysis A, 2009, 300, 111-115.	4.8	48
132	Structural changes of noble metal catalysts during ignition and extinction of the partial oxidation of methane studied by advanced QEXAFS techniques. Physical Chemistry Chemical Physics, 2009, 11, 8779.	1.3	48
133	Oscillatory CO Oxidation Over Pt/Al2O3 Catalysts Studied by In situ XAS and DRIFTS. Topics in Catalysis, 2013, 56, 333-338.	1.3	48
134	Impact of Preparation Method and Hydrothermal Aging on Particle Size Distribution of Pt/γ-Al ₂ O ₃ and Its Performance in CO and NO Oxidation. Journal of Physical Chemistry C, 2019, 123, 5433-5446.	1.5	48
135	From agriculture residue to upgraded product: The thermochemical conversion of sugarcane bagasse for fuel and chemical products. Fuel Processing Technology, 2020, 197, 106199.	3.7	48
136	Structural dynamics in Ni–Fe catalysts during CO ₂ methanation – role of iron oxide clusters. Catalysis Science and Technology, 2020, 10, 7542-7554.	2.1	48
137	Probing Active Sites During Palladium-Catalyzed Alcohol Oxidation in "Supercritical―Carbon Dioxide. Catalysis Letters, 2003, 90, 221-229.	1.4	47
138	Near-Critical CO2in Mesoporous Silica Studied by In Situ FTIR Spectroscopy. Langmuir, 2004, 20, 2890-2899.	1.6	47
139	Selective oxidation of alcohols with oxygen on Ru–Co-hydroxyapatite: A mechanistic study. Journal of Molecular Catalysis A, 2005, 242, 224-232.	4.8	47
140	Mild hydrotreatment of the light fraction of fast-pyrolysis oil produced from straw over nickel-based catalysts. Biomass and Bioenergy, 2015, 83, 525-538.	2.9	47
141	Structure and chemistry of surface-doped Pt:SnO ₂ gas sensing materials. RSC Advances, 2016, 6, 28149-28155.	1.7	47
142	Solventless synthesis of propylene carbonate catalysed by chromium–salen complexes: Bridging homogeneous and heterogeneous catalysis. Journal of Molecular Catalysis A, 2005, 242, 32-39.	4.8	45
143	Oscillatory Behavior during the Catalytic Partial Oxidation of Methane: Following Dynamic Structural Changes of Palladium Using the QEXAFS Technique. Journal of Physical Chemistry C, 2012, 116, 599-609.	1.5	45
144	Supported molybdenum carbide for higher alcohol synthesis from syngas. Catalysis Today, 2013, 215, 162-168.	2.2	43

#	Article	IF	CITATIONS
145	Continuous microfluidic synthesis of colloidal ultrasmall gold nanoparticles: <i>in situ</i> study of the early reaction stages and application for catalysis. Reaction Chemistry and Engineering, 2017, 2, 876-884.	1.9	43
146	Probing the Active Sites of MoS ₂ Based Hydrotreating Catalysts Using Modulation Excitation Spectroscopy. ACS Catalysis, 2019, 9, 2568-2579.	5.5	43
147	High-resolution chemical imaging of gold nanoparticles using hard x-ray ptychography. Applied Physics Letters, 2013, 102, 203104.	1.5	42
148	Fe and Mnâ€Based Catalysts Supported on γâ€Al ₂ O ₃ for CO Oxidation under O ₂ â€Rich Conditions. ChemCatChem, 2014, 6, 1763-1773.	1.8	42
149	Selective oxidation of propylene to acrolein by hydrothermally synthesized bismuth molybdates. Applied Catalysis A: General, 2014, 482, 145-156.	2.2	41
150	Synthesis and Characterisation of Hierarchically Structured Titanium Silicaliteâ€1 Zeolites with Large Intracrystalline Macropores. Chemistry - A European Journal, 2019, 25, 14430-14440.	1.7	41
151	The fate of platinum in Pt/Ba/CeO2 and Pt/Ba/Al2O3 catalysts during thermal aging. Journal of Catalysis, 2007, 251, 28-38.	3.1	40
152	Oscillatory behaviour of catalytic properties, structure and temperature during the catalytic partial oxidation of methane on Pd/Al2O3. Physical Chemistry Chemical Physics, 2010, 12, 2288.	1.3	40
153	Highly dispersed PdS preferably anchored on In2S3 of MnS/In2S3 composite for effective and stable hydrogen production from H2S. Journal of Catalysis, 2019, 373, 48-57.	3.1	40
154	Piezo X-ray Absorption Spectroscopy for the Investigation of Solid-State Transformations in the Millisecond Range. Journal of Physical Chemistry B, 2001, 105, 5161-5168.	1.2	39
155	Solvent-modified supercritical CO: A beneficial medium for heterogeneously catalyzed oxidation reactions. Applied Catalysis A: General, 2006, 298, 50-56.	2.2	39
156	Flame spray synthesis of CoMo/Al2O3 hydrotreating catalysts. Applied Catalysis A: General, 2011, 397, 201-208.	2.2	39
157	In Situ Multimodal 3D Chemical Imaging of a Hierarchically Structured Core@Shell Catalyst. Journal of the American Chemical Society, 2017, 139, 7855-7863.	6.6	39
158	Influence of feedstock, catalyst, pyrolysis and hydrotreatment temperature on the composition of upgraded oils from intermediate pyrolysis. Biomass and Bioenergy, 2018, 116, 236-248.	2.9	39
159	Activating a Cu/ZnO : Al Catalyst – Much More than Reduction: Decomposition, Selfâ€Đoping and Polymorphism. ChemCatChem, 2019, 11, 1587-1592.	1.8	39
160	Comparative study of structural properties and NOx storage-reduction behavior of Pt/Ba/CeO2 and Pt/Ba/Al2O3. Applied Catalysis B: Environmental, 2008, 78, 288-300.	10.8	38
161	Filtration of nanoparticles: Evolution of cake structure and pressure-drop. Journal of Aerosol Science, 2009, 40, 965-981.	1.8	38
162	Bismuth Molybdate Catalysts Prepared by Mild Hydrothermal Synthesis: Influence of pH on the Selective Oxidation of Propylene. Catalysts, 2015, 5, 1554-1573.	1.6	38

#	Article	IF	CITATIONS
163	Effect of NO2 and water on the catalytic oxidation of soot. Applied Catalysis B: Environmental, 2017, 205, 182-188.	10.8	38
164	Insight into the Nature of Active Species of Pt/Al ₂ O ₃ Catalysts for low Temperature NH ₃ Oxidation. ChemCatChem, 2020, 12, 867-880.	1.8	38
165	Exploiting the dynamic properties of Pt on ceria for low-temperature CO oxidation. Catalysis Science and Technology, 2020, 10, 3904-3917.	2.1	38
166	In situ X-ray absorption study during methane combustion over Pd/ZrO2 catalysts. Physical Chemistry Chemical Physics, 2003, 5, 1481-1488.	1.3	36
167	On the Presence of Fe(IV) in Fe-ZSM-5 and FeSrO3-xUnequivocal Detection of the 3d4Spin System by Resonant Inelastic X-ray Scattering. Journal of Physical Chemistry B, 2006, 110, 18104-18107.	1.2	36
168	One-step synthesis of bismuth molybdate catalysts via flame spray pyrolysis for the selective oxidation of propylene to acrolein. Chemical Communications, 2014, 50, 15404-15406.	2.2	36
169	Cu-SSZ-13 as pre-turbine NOx-removal-catalyst: Impact of pressure and catalyst poisons. Applied Catalysis B: Environmental, 2016, 198, 548-557.	10.8	36
170	Importance of the oxygen bond strength for catalytic activity in soot oxidation. Applied Catalysis B: Environmental, 2016, 188, 235-244.	10.8	36
171	Hydrotreatment of Fast Pyrolysis Bio-oil Fractions Over Nickel-Based Catalyst. Topics in Catalysis, 2018, 61, 1769-1782.	1.3	36
172	Moving Frontiers in Transition Metal Catalysis: Synthesis, Characterization and Modeling. Advanced Materials, 2019, 31, e1807381.	11.1	36
173	Novel MnS/(InxCu1-x)2S3 composite for robust solar hydrogen sulphide splitting via the synergy of solid solution and heterojunction. Applied Catalysis B: Environmental, 2019, 243, 790-800.	10.8	36
174	Title is missing!. Catalysis Letters, 2002, 78, 13-21.	1.4	35
175	Gold catalysed selective oxidation of alcohols in supercritical carbon dioxide. Topics in Catalysis, 2007, 44, 285-292.	1.3	35
176	In situ XAS study of the Mn(III)(salen)Br catalyzed synthesis of cyclic organic carbonates from epoxides and CO2. Journal of Molecular Catalysis A, 2009, 297, 63-72.	4.8	35
177	Microfluidic Synthesis of Ultrasmall AuPd Nanoparticles with a Homogeneously Mixed Alloy Structure in Fast Continuous Flow for Catalytic Applications. Journal of Physical Chemistry C, 2018, 122, 1721-1731.	1.5	35
178	Palladiumâ€Based Bimetallic Nanocrystal Catalysts for the Direct Synthesis of Hydrogen Peroxide. ChemSusChem, 2020, 13, 3243-3251.	3.6	35
179	Ru-Doped Cobaltâ~'Zirconia Nanocomposites by Flame Synthesis: Physicochemical and Catalytic Properties. Chemistry of Materials, 2008, 20, 4069-4079.	3.2	34
180	Selective side-chain oxidation of alkyl aromatic compounds catalyzed by cerium modified silver catalysts. Journal of Molecular Catalysis A, 2010, 331, 40-49.	4.8	34

#	Article	IF	CITATIONS
181	Continuous Synthesis of γ-Valerolactone in a Trickle-Bed Reactor over Supported Nickel Catalysts. Industrial & Engineering Chemistry Research, 2017, 56, 2680-2689.	1.8	34
182	Effect of pyrolysis oil components on the activity and selectivity of nickel-based catalysts during hydrotreatment. Applied Catalysis A: General, 2017, 544, 161-172.	2.2	34
183	CO ₂ Reduction over Mo ₂ C-Based Catalysts. ACS Catalysis, 2021, 11, 1624-1639.	5.5	34
184	Liquid phase oxidation of alcohols with oxygen: in situ monitoring of the oxidation state of Bi-promoted Pd/Al2O3Electronic supplementary information (ESI) available: XANES spectra at the Bi L3-edge. See http://www.rsc.org/suppdata/cc/b3/b304508k/. Chemical Communications, 2003, , 2304.	2.2	33
185	Continuous catalytic "one-pot―multi-step synthesis of 2-ethylhexanal from crotonaldehyde. Chemical Communications, 2007, , 3562.	2.2	33
186	Emission of Toxic HCN During NO _{<i>x</i>} Removal by Ammonia SCR in the Exhaust of Leanâ€Burn Natural Gas Engines. Angewandte Chemie - International Edition, 2020, 59, 14423-14428.	7.2	33
187	W/Mo-Oxide Nanomaterials: Structureâ^ Property Relationships and Ammonia-Sensing Studies. Journal of Physical Chemistry C, 2011, 115, 1134-1142.	1.5	32
188	Influence of preparation method on supported Cu–Ni alloys and their catalytic properties in high pressure CO hydrogenation. Catalysis Science and Technology, 2014, 4, 378-386.	2.1	32
189	Parallel structural screening of solid materials. Journal of Materials Chemistry, 2007, 17, 2603.	6.7	31
190	The dedicated QEXAFS facility at the SLS: Performance and Scientific Opportunities. AIP Conference Proceedings, 2010, , .	0.3	31
191	Influence of single- and double-flame spray pyrolysis on the structure of MnOx/γ-Al2O3 and FeOx/γ-Al2O3 catalysts and their behaviour in CO removal under lean exhaust gas conditions. Catalysis Science and Technology, 2015, 5, 455-464.	2.1	31
192	Soot and hydrocarbon oxidation over vanadia-based SCR catalysts. Catalysis Today, 2015, 258, 461-469.	2.2	31
193	<i>In Situ</i> Ptychography of Heterogeneous Catalysts using Hard X-Rays: High Resolution Imaging at Ambient Pressure and Elevated Temperature. Microscopy and Microanalysis, 2016, 22, 178-188.	0.2	31
194	Influence of H 2 O and H 2 S on the composition, activity, and stability of sulfided Mo, CoMo, and NiMo supported on MgAl 2 O 4 for hydrodeoxygenation of ethylene glycol. Applied Catalysis A: General, 2018, 551, 106-121.	2.2	31
195	Copper Coordination to Water and Ammonia in Cu ^{II} -Exchanged SSZ-13: Atomistic Insights from DFT Calculations and in Situ XAS Experiments. Journal of Physical Chemistry C, 2018, 122, 16741-16755.	1.5	31
196	Tomographic reconstruction with a generative adversarial network. Journal of Synchrotron Radiation, 2020, 27, 486-493.	1.0	31
197	Preparation of thin silver films on mica studied by XRD and AFM. Applied Surface Science, 1996, 99, 353-359.	3.1	30
198	In situ XANES study on TiO2–SiO2 aerogels and flame made materials. Physical Chemistry Chemical Physics, 2002, 4, 3514-3521.	1.3	30

#	Article	IF	CITATIONS
199	Chemoenzymatic Combination of Glucose Oxidase with Titanium Silicaliteâ€1. ChemCatChem, 2010, 2, 943-945.	1.8	30
200	Structure of alumina supported vanadia catalysts for oxidative dehydrogenation of propane prepared by flame spray pyrolysis. Applied Catalysis A: General, 2013, 451, 207-215.	2.2	30
201	Continuous Catalytic Hydrodeoxygenation of Guaiacol over Pt/SiO2 and Pt/H-MFI-90. Catalysts, 2015, 5, 1152-1166.	1.6	30
202	Reduction and carburization of iron oxides for Fischer–Tropsch synthesis. Journal of Energy Chemistry, 2020, 51, 48-61.	7.1	30
203	Unusual Redox Properties of Bismuth in Sol–Gel Bi-Mo-Ti Mixed Oxides. Journal of Catalysis, 1998, 177, 53-59.	3.1	29
204	Gold supported on Mg, Al and Cu containing mixed oxides: Relation between surface properties and behavior in catalytic aerobic oxidation of 1-phenylethanol. Catalysis Today, 2009, 141, 349-354.	2.2	29
205	In Situ Xâ€ray Absorption Spectroscopy/Energyâ€Ðispersive Xâ€ray Diffraction Studies on the Hydrothermal Formation of Bi ₂ W _{1–<i>x</i>} Mo <i>_x</i> O ₆ Nanomaterials. European Journal of Inorganic Chemistry, 2012, 2012, 783-789.	1.0	29
206	Correlative Multiscale 3D Imaging of a Hierarchical Nanoporous Gold Catalyst by Electron, Ion and Xâ€ray Nanotomography. ChemCatChem, 2018, 10, 2858-2867.	1.8	29
207	The direct synthesis of hydrogen peroxide from H ₂ and O ₂ using Pd–Ga and Pd–In catalysts. Catalysis Science and Technology, 2020, 10, 1925-1932.	2.1	29
208	Bifunctional hybrid catalysts derived from Cu/Zn-based nanoparticles for single-step dimethyl ether synthesis. Catalysis Science and Technology, 2016, 6, 1054-1063.	2.1	28
209	Beamstop-based low-background ptychography to image weakly scattering objects. Ultramicroscopy, 2017, 173, 52-57.	0.8	28
210	Reactivity of Bismuth Molybdates for Selective Oxidation of Propylene Probed by Correlative Operando Spectroscopies. ACS Catalysis, 2018, 8, 6462-6475.	5.5	28
211	Chemical Nature of Microfluidically Synthesized AuPd Nanoalloys Supported on TiO ₂ . ACS Catalysis, 2019, 9, 5462-5473.	5.5	28
212	Nonclassical 2,4-Diamino-5-aryl-6-ethylpyrimidine Antifolates:Â Activity as Inhibitors of Dihydrofolate Reductase fromPneumocystis cariniiandToxoplasma gondiiand as Antitumor Agents. Journal of Medicinal Chemistry, 1997, 40, 3040-3048.	2.9	27
213	Comparative in situ XAS investigations during aerobic oxidation of alcohols over ruthenium, platinum and palladium catalysts in supercritical CO2. Catalysis Today, 2007, 126, 27-36.	2.2	27
214	Study of the Chemical Mechanism Involved in the Formation of Tungstite in Benzyl Alcohol by the Advanced QEXAFS Technique. Chemistry - A European Journal, 2012, 18, 2305-2312.	1.7	27
215	Structure, activity and kinetics of supported molybdenum oxide and mixed molybdenum–vanadium oxide catalysts prepared by flame spray pyrolysis for propane OHD. Applied Catalysis A: General, 2014, 472, 29-38.	2.2	27
216	Structure and activity of flame made ceria supported Rh and Pt water gas shift catalysts. Applied Catalysis A: General, 2015, 504, 381-390.	2.2	27

#	Article	IF	CITATIONS
217	Ti ⁰ nanoparticles via lithium-naphthalenide-driven reduction. Chemical Communications, 2016, 52, 6316-6319.	2.2	27
218	Selective Aerobic Oxidation of 5â€(Hydroxymethyl)furfural over Heterogeneous Silverâ€Gold Nanoparticle Catalysts. Advanced Synthesis and Catalysis, 2020, 362, 5681-5696.	2.1	27
219	Hydrothermal Synthesis of Bi ₆ S ₂ O ₁₅ Nanowires: Structural, in situ EXAFS, and Humidity‣ensing Studies. Small, 2010, 6, 1173-1179.	5.2	26
220	Pd@SnO ₂ and SnO ₂ @Pd Core@Shell Nanocomposite Sensors. Particle and Particle Systems Characterization, 2014, 31, 591-596.	1.2	26
221	Flame-made Cu/ZnO/Al2O3 catalyst for dimethyl ether production. Catalysis Communications, 2014, 43, 52-56.	1.6	26
222	Electrochemically Synthesized Pt/Al2O3 Oxidation Catalysts. Catalysis Letters, 2016, 146, 452-463.	1.4	26
223	Reactivity of platform molecules in pyrolysis oil and in water during hydrotreatment over nickel and ruthenium catalysts. Biomass and Bioenergy, 2017, 106, 63-73.	2.9	26
224	Water-gas shift reaction over platinum/strontium apatite catalysts. Applied Catalysis B: Environmental, 2017, 202, 587-596.	10.8	26
225	<i>Operando</i> XAS/XRD and Raman Spectroscopic Study of Structural Changes of the Iron Molybdate Catalyst during Selective Oxidation of Methanol. ChemCatChem, 2019, 11, 4871-4883.	1.8	26
226	<i>In situ</i> probing of Pt/TiO ₂ activity in low-temperature ammonia oxidation. Catalysis Science and Technology, 2021, 11, 250-263.	2.1	26
227	A simple route to highly active ruthenium catalysts for formylation reactions with hydrogen and carbon dioxide. Journal of Molecular Catalysis A, 2005, 226, 253-257.	4.8	25
228	Two-Nozzle Flame Spray Pyrolysis (FSP) Synthesis of CoMo/Al2O3 Hydrotreating Catalysts. Catalysis Letters, 2013, 143, 386-394.	1.4	25
229	Rhodium Oxide Surface-Loaded Gas Sensors. Nanomaterials, 2018, 8, 892.	1.9	25
230	Toward an Intensified Process of Biomass-Derived Monomers: The Influence of 5-(Hydroxymethyl)furfural Byproducts on the Gold-Catalyzed Synthesis of 2,5-Furandicarboxylic Acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 11512-11521.	3.2	25
231	Structural dynamics of an iron molybdate catalyst under redox cycling conditions studied with <i>in situ</i> multi edge XAS and XRD. Physical Chemistry Chemical Physics, 2020, 22, 11713-11723.	1.3	25
232	PtyNAMi: ptychographic nano-analytical microscope. Journal of Applied Crystallography, 2020, 53, 957-971.	1.9	25
233	Microwave-Hydrothermal Synthesis of Nanostructured Zinc-Copper Gallates. European Journal of Inorganic Chemistry, 2010, 2010, 2036-2043.	1.0	24
234	Systematic study on the influence of the morphology of $\hat{I}\pm$ -MoO3 in the selective oxidation of propylene. Journal of Solid State Chemistry, 2015, 228, 42-52.	1.4	24

#	Article	IF	CITATIONS
235	The SCR of NOx with NH3 Examined by Novel X-ray Emission and X-ray Absorption Methods. Topics in Catalysis, 2016, 59, 866-874.	1.3	24
236	Direct Catalytic Route to Biomass-Derived 2,5-Furandicarboxylic Acid and Its Use as Monomer in a Multicomponent Polymerization. ACS Omega, 2019, 4, 16972-16979.	1.6	24
237	Reduction of 4-nitrotoluene over Fe–Mg–Al lamellar double hydroxides. Journal of Molecular Catalysis A, 1999, 139, 305-313.	4.8	23
238	Methanation of carbon monoxide over promoted flame-synthesized cobalt clusters stabilized in zirconia matrix. Journal of Catalysis, 2015, 326, 182-193.	3.1	23
239	Supported Intermetallic PdZn Nanoparticles as Bifunctional Catalysts for the Direct Synthesis of Dimethyl Ether from COâ€Rich Synthesis Gas. Angewandte Chemie - International Edition, 2019, 58, 15655-15659.	7.2	23
240	Role of Iron on the Structure and Stability of Ni _{3.2} Fe/Al ₂ O ₃ during Dynamic CO ₂ Methanation for P2X Applications. ChemCatChem, 2019, 11, 5018-5021.	1.8	23
241	Coupled ptychography and tomography algorithm improves reconstruction of experimental data. Optica, 2019, 6, 1282.	4.8	23
242	IR spectroscopy and phase behavior studies of the catalytic synthesis of propylene carbonate: Expanded liquid versus supercritical fluid. Applied Catalysis A: General, 2006, 305, 46-53.	2.2	22
243	Axial Changes of Catalyst Structure and Temperature in a Fixed-Bed Microreactor During Noble Metal Catalysed Partial Oxidation of Methane. Topics in Catalysis, 2009, 52, 1360-1370.	1.3	22
244	Aging of a Pt/Al ₂ O ₃ exhaust gas catalyst monitored by quasi in situ X-ray micro computed tomography. RSC Advances, 2015, 5, 6893-6905.	1.7	22
245	Synthesis and Regeneration of Nickel-Based Catalysts for Hydrodeoxygenation of Beech Wood Fast Pyrolysis Bio-Oil. Catalysts, 2018, 8, 449.	1.6	22
246	A versatile nanoreactor for complementary <i>in situ</i> X-ray and electron microscopy studies in catalysis and materials science. Journal of Synchrotron Radiation, 2019, 26, 1769-1781.	1.0	22
247	Identification of catalyst surface species during asymmetric platinum-catalysed hydrogenation in a "supercritical―solvent. Chemical Communications, 2004, , 744-745.	2.2	21
248	Xray Absorption Spectroscopy on Heterogeneous Catalysts at the new XAS Beamline at ANKA. Physica Scripta, 2005, , 769.	1.2	21
249	Structure–function relationships of conventionally and flame made Pd-doped sensors studied by X-ray absorption spectroscopy and DC-resistance. Sensors and Actuators B: Chemical, 2015, 219, 315-323.	4.0	21
250	Tuning the Structure of Platinum Particles on Ceria Inâ€Situ for Enhancing the Catalytic Performance of Exhaust Gas Catalysts. Angewandte Chemie, 2017, 129, 13258-13262.	1.6	21
251	On the challenges and constrains of ultra-low emission limits: Formaldehyde oxidation in catalytic sinusoidal-shaped channels. Chemical Engineering Science, 2019, 195, 841-850.	1.9	21
252	Liquidâ€Phase Synthesis of Highly Reactive Rareâ€Earth Metal Nanoparticles. Angewandte Chemie - International Edition, 2021, 60, 17373-17377.	7.2	21

#	Article	IF	CITATIONS
253	Impact of gas phase reactions and catalyst poisons on the NH3-SCR activity of a V2O5-WO3/TiO2 catalyst at pre-turbine position. Applied Catalysis B: Environmental, 2021, 288, 119991.	10.8	21
254	Formylation with supercritical carbon dioxide over Ru/Al2O3 modified by phosphines: heterogeneous or homogeneous catalysis?. Journal of Catalysis, 2005, 229, 144-153.	3.1	20
255	NH ₃ -SCR over V–W/TiO ₂ Investigated by Operando X-ray Absorption and Emission Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 14338-14349.	1.5	20
256	Regeneration of Sulfur Poisoned Pd–Pt/CeO2–ZrO2–Y2O3–La2O3 and Pd–Pt/Al2O3 Methane Oxidatio Catalysts. Topics in Catalysis, 2019, 62, 164-171.	^{շղ} .3	20
257	The Influence of the Gold Particle Size on the Catalytic Oxidation of 5-(Hydroxymethyl)furfural. Catalysts, 2020, 10, 342.	1.6	20
258	Rationalizing an Unexpected Structure Sensitivity in Heterogeneous Catalysis—CO Hydrogenation over Rh as a Case Study. ACS Catalysis, 2021, 11, 5189-5201.	5.5	20
259	HCl-doping of V/TiO2-based catalysts reveals the promotion of NH3-SCR and the rate limiting role of NO oxidative activation. Chemical Engineering Journal, 2021, 416, 128933.	6.6	20
260	Unravelling the Zn u Interaction during Activation of a Znâ€promoted Cu/MgO Model Methanol Catalyst. ChemCatChem, 2021, 13, 4120-4132.	1.8	20
261	<i>Operando</i> XAS Study of Pt-Doped CeO ₂ for the Nonoxidative Conversion of Methane. ACS Catalysis, 2022, 12, 3897-3908.	5.5	20
262	Controlling Reaction-Induced Loss of Active Sites in ZnO _{<i>x</i>} /Silicalite-1 for Durable Nonoxidative Propane Dehydrogenation. ACS Catalysis, 2022, 12, 4608-4617.	5.5	20
263	Synchrotron Studies of Catalysts: From XAFS to QEXAFS and Beyond. Synchrotron Radiation News, 2009, 22, 2-4.	0.2	19
264	Stability of a Bifunctional Cu-Based Core@Zeolite Shell Catalyst for Dimethyl Ether Synthesis Under Redox Conditions Studied by Environmental Transmission Electron Microscopy and <i>In Situ</i> X-Ray Ptychography. Microscopy and Microanalysis, 2017, 23, 501-512.	0.2	19
265	Visible light-enhanced photothermal CO2 hydrogenation over Pt/Al2O3 catalyst. Chinese Journal of Catalysis, 2020, 41, 286-293.	6.9	19
266	Surface Noble Metal Concentration on Ceria as a Key Descriptor for Efficient Catalytic CO Oxidation. ACS Catalysis, 2022, 12, 2473-2486.	5.5	19
267	Microkinetic Analysis of the Oxygen Evolution Performance at Different Stages of Iridium Oxide Degradation. Journal of the American Chemical Society, 2022, 144, 13205-13217.	6.6	19
268	Silicon drift detectors as a tool for time-resolved fluorescence XAFS on low-concentrated samples in catalysis. Journal of Synchrotron Radiation, 2002, 9, 246-253.	1.0	18
269	Evaluation of strategies for the immobilization of bidentate ruthenium–phosphine complexes used for the reductive amination of carbon dioxide. Applied Catalysis A: General, 2005, 296, 238-250.	2.2	18
270	Thermal ageing phenomena and strategies towards reactivation of NO x - storage catalysts. Topics in Catalysis, 2007, 42-43, 3-7.	1.3	18

#	Article	IF	CITATIONS
271	Influence of gas atmospheres and ceria on the stability of nanoporous gold studied by environmental electron microscopy and in situ ptychography. RSC Advances, 2016, 6, 83031-83043.	1.7	18
272	Influence of Titania Synthesized by Pulsed Laser Ablation on the State of Platinum during Ammonia Oxidation. Applied Sciences (Switzerland), 2020, 10, 4699.	1.3	18
273	An intermetallic Pd2Ca nanoparticle catalyst for the single-step conversion of CO-rich synthesis gas to dimethyl ether. Applied Catalysis A: General, 2018, 562, 206-214.	2.2	17
274	Mapping the Pore Architecture of Structured Catalyst Monoliths from Nanometer to Centimeter Scale with Electron and X-ray Tomographies. Journal of Physical Chemistry C, 2019, 123, 25197-25208.	1.5	17
275	Dynamic structural changes of supported Pd, PdSn, and PdIn nanoparticles during continuous flow high pressure direct H ₂ O ₂ synthesis. Catalysis Science and Technology, 2020, 10, 4726-4742.	2.1	17
276	Spatiotemporal Investigation of the Temperature and Structure of a Pt/CeO ₂ Oxidation Catalyst for CO and Hydrocarbon Oxidation during Pulse Activation. Industrial & Engineering Chemistry Research, 2021, 60, 6662-6675.	1.8	17
277	Preparation and characterization of thin TiO 2 -films on gold/mica. Fresenius' Journal of Analytical Chemistry, 1997, 358, 96-100.	1.5	16
278	Fluorescence EXAFS for thein situstudy on the state of promotors in catalysis. Journal of Synchrotron Radiation, 2001, 8, 572-574.	1.0	16
279	Study on the hydrothermal and SO2 stability of Al2O3-supported manganese and iron oxide catalysts for lean CO oxidation. Catalysis Today, 2015, 258, 498-506.	2.2	16
280	The CAT-ACT Beamline at ANKA: A new high energy X-ray spectroscopy facility for CATalysis and ACTinide research. Journal of Physics: Conference Series, 2016, 712, 012019.	0.3	16
281	Bottomâ€Up Design of a Copper–Ruthenium Nanoparticulate Catalyst for Lowâ€Temperature Ammonia Oxidation. Angewandte Chemie - International Edition, 2017, 56, 8711-8715.	7.2	16
282	Cell Designs for In Situ and Operando Studies. , 2017, , 75-89.		16
283	Selective Catalytic Reduction of NOx with Ammonia and Hydrocarbon Oxidation Over V2O5–MoO3/TiO2 and V2O5–WO3/TiO2 SCR Catalysts. Topics in Catalysis, 2019, 62, 129-139.	1.3	16
284	Bridging the gap between industry and synchrotron: an <i>operando</i> study at 30 bar over 300 h during Fischer–Tropsch synthesis. Reaction Chemistry and Engineering, 2020, 5, 1071-1082.	1.9	16
285	Solvent Influence on the Hydrodeoxygenation of Guaiacol over Pt/SiO ₂ and Pt/Hâ€MFI 90 Catalysts. Chemie-Ingenieur-Technik, 2015, 87, 1771-1780.	0.4	15
286	Comparison of the Catalytic Performance and Carbon Monoxide Sensing Behavior of Pd‧nO ₂ Core@Shell Nanocomposites. ChemCatChem, 2017, 9, 407-413.	1.8	15
287	High throughput cell for X-ray absorption spectroscopy applied to study the effect of Au on Rh-catalyzed partial oxidation of methane. Applied Catalysis A: General, 2009, 353, 36-45.	2.2	14
288	Insight into the structure of Pd/ZrO ₂ during the total oxidation of methane using combined in situ XRD, X-ray absorption and Raman spectroscopy. Journal of Physics: Conference Series, 2009, 190, 012160.	0.3	14

#	Article	IF	CITATIONS
289	Asymmetric CC Bondâ€Formation Reaction with Pd: How to Favor Heterogeneous or Homogeneous Catalysis?. Chemistry - A European Journal, 2010, 16, 9658-9668.	1.7	14
290	Kinetics of acetic acid synthesis from ethanol over a Cu/SiO2 catalyst. Applied Catalysis A: General, 2011, 402, 69-79.	2.2	14
291	Ti and Si doping as a way to increase low temperature activity of sulfated Ag/Al2O3 in H2-assisted NH3-SCR of NOx. Applied Catalysis B: Environmental, 2014, 148-149, 62-69.	10.8	14
292	Dynamic transformation of small Ni particles during methanation of CO ₂ under fluctuating reaction conditions monitored by <i>operando</i> X-ray absorption spectroscopy. Journal of Physics: Conference Series, 2016, 712, 012050.	0.3	14
293	Towards advanced structural analysis of iron oxide clusters on the surface of γ-Al2O3 using EXAFS. Applied Surface Science, 2016, 386, 234-246.	3.1	14
294	Structural Evolution of Highly Active Multicomponent Catalysts for Selective Propylene Oxidation. Catalysts, 2018, 8, 356.	1.6	14
295	Homogeneous oxidation of light alkanes in the exhaust of turbocharged lean-burn gas engines. Chemical Engineering Journal, 2019, 377, 119800.	6.6	14
296	Impact of the Support on the Catalytic Performance, Inhibition Effects and SO2 Poisoning Resistance of Pt-Based Formaldehyde Oxidation Catalysts. Topics in Catalysis, 2019, 62, 198-205.	1.3	14
297	Optimizing Niâ^'Feâ^'Ga alloys into Ni ₂ FeGa for the Hydrogenation of CO ₂ into Methanol. ChemCatChem, 2020, 12, 3265-3273.	1.8	14
298	Mechanistic insights into the selective oxidation of 5-(hydroxymethyl)furfural over silver-based catalysts. Catalysis Science and Technology, 2020, 10, 5036-5047.	2.1	14
299	Sol–gel bismuth–molybdenum–titanium mixed oxides I. Preparation and structural properties. Applied Catalysis A: General, 1998, 175, 11-19.	2.2	13
300	Reduction and re-oxidation of Cu/Al ₂ O ₃ catalysts investigated with quick-scanning XANES and EXAFS. Journal of Physics: Conference Series, 2009, 190, 012153.	0.3	13
301	Characterization of highly porous nanoparticle deposits by permeance measurements. Powder Technology, 2011, 207, 279-289.	2.1	13
302	Ceria Prepared by Flame Spray Pyrolysis as an Efficient Catalyst for Oxidation of Diesel Soot. Catalysis Letters, 2014, 144, 1661-1666.	1.4	13
303	Oxidation State and Dielectric Properties of Ceria-Based Catalysts by Complementary Microwave Cavity Perturbation and X-Ray Absorption Spectroscopy Measurements. Topics in Catalysis, 2019, 62, 227-236.	1.3	13
304	Stability of Iron-Molybdate Catalysts for Selective Oxidation of Methanol to Formaldehyde: Influence of Preparation Method. Catalysis Letters, 2020, 150, 1434-1444.	1.4	13
305	Microfluidic Crystallization of Surfactant-Free Doped Zinc Sulfide Nanoparticles for Optical Bioimaging Applications. ACS Applied Materials & Interfaces, 2020, 12, 44074-44087.	4.0	13
306	Investigation of the ignition behaviour of the noble metal catalyzed catalytic partial oxidation of methane. Journal of Physics: Conference Series, 2009, 190, 012162.	0.3	12

#	Article	IF	CITATIONS
307	Heterogeneously Catalysed Aldol Reactions in Supercritical Carbon Dioxide as Innovative and Non-Flammable Reaction Medium. Topics in Catalysis, 2011, 54, 1115-1123.	1.3	12
308	Selective oxidation of benzyl alcohol in dense CO2: Insight by phase behavior modeling. Journal of Supercritical Fluids, 2012, 63, 199-207.	1.6	12
309	Hydrodeoxygenation (HDO) of Aliphatic Oxygenates and Phenol over NiMo/MgAl2O4: Reactivity, Inhibition, and Catalyst Reactivation. Catalysts, 2019, 9, 521.	1.6	12
310	High Stability of Rh Oxide-Based Thermoresistive Catalytic Combustion Sensors Proven by <i>Operando</i> X-ray Absorption Spectroscopy and X-ray Diffraction. ACS Sensors, 2020, 5, 2486-2496.	4.0	12
311	Using Transient XAS to Detect Minute Levels of Reversible S-O Exchange at the Active Sites of MoS ₂ -Based Hydrotreating Catalysts: Effect of Metal Loading, Promotion, Temperature, and Oxygenate Reactant. ACS Catalysis, 2022, 12, 633-647.	5.5	12
312	Monitoring of fast Transformations in Solid State Chemistry and Heterogeneous Catalysis by QEXAFS in the Second Scale. Physica Scripta, 2005, , 831.	1.2	11
313	Shining X-rays on catalysts at work. Journal of Physics: Conference Series, 2009, 190, 012151.	0.3	11
314	Experimental determination and modeling of the phase behavior for the selective oxidation of benzyl alcohol in supercritical CO2. Fluid Phase Equilibria, 2011, 302, 83-92.	1.4	11
315	Effect of the Addition of Ethanol to Synthesis Gas on the Production of Higher Alcohols over Cs and Ru Modified Cu/ZnO Catalysts. Industrial & Engineering Chemistry Research, 2015, 54, 1452-1463.	1.8	11
316	Bifunctional catalysts based on colloidal Cu/Zn nanoparticles for the direct conversion of synthesis gas to dimethyl ether and hydrocarbons. Applied Catalysis A: General, 2018, 557, 99-107.	2.2	11
317	TiO ₂ -Supported catalysts with ZnO and ZrO ₂ for non-oxidative dehydrogenation of propane: mechanistic analysis and application potential. Catalysis Science and Technology, 2020, 10, 7046-7055.	2.1	11
318	Redox properties of supported copper catalysts studied in liquid and gas phase by in situ ATR-IR and XAS. Catalysis Today, 2011, 178, 124-131.	2.2	10
319	Fluid phase equilibria during propylene carbonate synthesis from propylene oxide in carbon dioxide medium. Journal of Supercritical Fluids, 2013, 82, 106-115.	1.6	10
320	Evaluation of High-Loaded Ni-Based Catalysts for Upgrading Fast Pyrolysis Bio-Oil. Catalysts, 2019, 9, 784.	1.6	10
321	Chemical Imaging of Mixed Metal Oxide Catalysts for Propylene Oxidation: From Model Binary Systems to Complex Multicomponent Systems. ChemCatChem, 2021, 13, 2483-2493.	1.8	10
322	Bottomâ€Up Design of a Copper–Ruthenium Nanoparticulate Catalyst for Lowâ€Temperature Ammonia Oxidation. Angewandte Chemie, 2017, 129, 8837-8841.	1.6	9
323	The Effect of Electrical Polarization on Electronic Structure in LSM Electrodes: An Operando XAS, RIXS and XES Study. Journal of the Electrochemical Society, 2017, 164, F3064-F3072.	1.3	9
324	Hydrocarbon and Soot Oxidation over Cerium and Iron Doped Vanadium SCR Catalysts. ChemCatChem, 2020, 12, 6272-6284.	1.8	9

#	Article	IF	CITATIONS
325	Stability of Cobalt Particles In and Outside HZSMâ€5 under CO Hydrogenation Conditions Studied by <i>ex situ</i> and <i>inâ€situ</i> Electron Microscopy. ChemCatChem, 2021, 13, 718-729.	1.8	9
326	Complementary operando insights into the activation of multicomponent selective propylene oxidation catalysts. Journal of Catalysis, 2022, 408, 339-355.	3.1	9
327	Versatile <i>inâ€situ/operando</i> Setup for Studying Catalysts by Xâ€Ray Absorption Spectroscopy under Demanding and Dynamic Reaction Conditions for Energy Storage and Conversion. Chemistry Methods, 2022, 2, .	1.8	9
328	Sol–gel bismuth–molybdenum–titanium mixed oxides. Applied Catalysis A: General, 1999, 179, 189-202.	2.2	8
329	Xray Absorption Spectroscopy on CuZnO Catalysts Selected by HighThroughput Experimentation Techniques. Physica Scripta, 2005, , 819.	1.2	8
330	Potential and Limitations of Natural Chabazite for Selective Catalytic Reduction of NOx with NH ₃ . Chemie-Ingenieur-Technik, 2013, 85, 632-641.	0.4	8
331	Structure and reducibility of a Fe/Al ₂ O ₃ catalyst for selective catalytic reduction studied by Fe K-edge XAFS spectroscopy. Journal of Physics: Conference Series, 2013, 430, 012054.	0.3	8
332	Morphological analysis of cerium oxide stabilized nanoporous gold catalysts by soft X-ray ASAXS. RSC Advances, 2017, 7, 45344-45350.	1.7	8
333	Continuous production of higher alcohols from synthesis gas and ethanol using Cs-modified CuO/ZnO/Al2O3 catalysts. Applied Catalysis A: General, 2019, 585, 117150.	2.2	8
334	Formaldehyde Oxidation Over Platinum: On the Kinetics Relevant to Exhaust Conditions of Lean-Burn Natural Gas Engines. Topics in Catalysis, 2019, 62, 206-213.	1.3	8
335	Spatiallyâ€Resolved Insights Into Local Activity and Structure of Niâ€Based CO ₂ Methanation Catalysts in Fixedâ€Bed Reactors. ChemCatChem, 2021, 13, 3010-3020.	1.8	8
336	Exploring catalyst dynamics in a fixed bed reactor by correlative operando spatially-resolved structure-activity profiling. Journal of Catalysis, 2022, 408, 372-387.	3.1	8
337	Challenges of Green Production of 2,5â€Furandicarboxylic Acid from Bioâ€Derived 5â€Hydroxymethylfurfural: Overcoming Deactivation by Concomitant Amino Acids. ChemSusChem, 2022, 15, .	3.6	8
338	Enhancement of Activity and Self-reactivation of NSR-catalysts by Temporary Formation of BaPtO3-perovskite. Catalysis Letters, 2008, 120, 1-7.	1.4	7
339	X-ray Absorption Spectroscopic Microscopy: From the Micro- to the Nanoscale. Synchrotron Radiation News, 2009, 22, 23-28.	0.2	7
340	The potential of operando XAFS for determining the role and structure of noble metal additives in metal oxide based gas sensors. Journal of Physics: Conference Series, 2013, 430, 012078.	0.3	7
341	Improving the sensitivity of QEXAFS using modulation excitation spectroscopy. Journal of Physics: Conference Series, 2013, 430, 012126.	0.3	7
342	A Microfluidic Device for the Investigation of Rapid Gold Nanoparticle Formation in Continuous Turbulent Flow. Journal of Physics: Conference Series, 2016, 712, 012072.	0.3	7

#	Article	IF	CITATIONS
343	HERFD-XANES and XES as complementary <i>operando</i> tools for monitoring the structure of Cu-based zeolite catalysts during NO _x -removal by ammonia SCR. Journal of Physics: Conference Series, 2016, 712, 012071.	0.3	7
344	Transient structural and catalytic behaviour of Pt-particles probed by operando spectroscopy during a realistic driving cycle. Catalysis Science and Technology, 2017, 7, 3999-4006.	2.1	7
345	Supported Intermetallic PdZn Nanoparticles as Bifunctional Catalysts for the Direct Synthesis of Dimethyl Ether from COâ€Rich Synthesis Gas. Angewandte Chemie, 2019, 131, 15802-15806.	1.6	7
346	NaCl-template-based synthesis of TiO ₂ -Pd/Pt hollow nanospheres for H ₂ O ₂ direct synthesis and CO oxidation. Nanoscale, 2021, 13, 2005-2011.	2.8	7
347	T-REX: new software for advanced QEXAFS data analysis. Journal of Synchrotron Radiation, 2012, 19, 920-929.	1.0	6
348	Fluid phase equilibria of the reaction mixture during the selective hydrogenation of 2-butenal in dense carbon dioxide. Applied Catalysis A: General, 2012, 443-444, 67-75.	2.2	6
349	Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration. Journal of Chemistry, 2014, 2014, 1-8.	0.9	6
350	Lithographically fabricated silicon microreactor for <i>in situ</i> characterization of heterogeneous catalysts—Enabling correlative characterization techniques. Review of Scientific Instruments, 2015, 86, 065101.	0.6	6
351	The Impact of Pre-Turbine Catalyst Placement on Methane Oxidation in Lean-Burn Gas Engines: An Experimental and Numerical Study. , 2017, , .		6
352	Liquid-phase synthesis of highly oxophilic zerovalent niobium and tantalum nanoparticles. Chemical Communications, 2021, 57, 3648-3651.	2.2	6
353	Effect of Selectivity Enhancers on the Structure of Palladium during High-Pressure Continuous-Flow Direct Synthesis of Hydrogen Peroxide in Ethanol. Journal of Physical Chemistry C, 2021, 125, 3451-3462.	1.5	6
354	The Impact of Pressure and Hydrocarbons on NOx Abatement over Cu- and Fe-Zeolites at Pre-Turbocharger Position. Catalysts, 2021, 11, 336.	1.6	6
355	Insights into the Structural Dynamics of Pt/CeO2 Single-Site Catalysts during CO Oxidation. Catalysts, 2021, 11, 617.	1.6	6
356	Cobaltâ€based Nanoreactors in Combined Fischerâ€īropsch Synthesis and Hydroprocessing: Effects on Methane and CO ₂ Selectivity. ChemCatChem, 2021, 13, 5216-5227.	1.8	6
357	Dynamic Structural Evolution of Ceria-Supported Pt Particles: A Thorough Spectroscopic Study. Journal of Physical Chemistry C, 2022, 126, 9051-9058.	1.5	6
358	Experimental determination and modeling of the phase behavior for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Journal of Supercritical Fluids, 2013, 84, 155-163.	1.6	5
359	Ageing Effects on Exhaust Gas Catalysts: Microscopic Changes Captured by X-Ray Tomography. Journal of Physics: Conference Series, 2014, 499, 012017.	0.3	5
360	Study of the relation between Mg content and dissolution kinetics of natural lime stone using μXRF, μXRD and μXAS. Journal of Physics: Conference Series, 2016, 712, 012144.	0.3	5

#	Article	IF	CITATIONS
361	Using combined XAS/DRIFTS to study CO/NO Oxidation over Pt/Al ₂ O ₃ catalysts. Journal of Physics: Conference Series, 2016, 712, 012045.	0.3	5
362	Spatial activity profiling along a fixed bed of powder catalyst during selective oxidation of propylene to acrolein. Catalysis Science and Technology, 2021, 11, 5781-5790.	2.1	5
363	Continuous synthesis of Cu/ZnO/Al ₂ O ₃ nanoparticles in a co-precipitation reaction using a silicon based microfluidic reactor. Reaction Chemistry and Engineering, 2022, 7, 730-740.	1.9	5
364	Time-Resolved and Operando XAS Studies on Heterogeneous Catalysts — From the Gas Phase Towards Reactions in Supercritical Fluids. AIP Conference Proceedings, 2007, , .	0.3	4
365	<i>In situ</i> characterization of catalysts and membranes in a microchannel under high-temperature water gas shift reaction conditions. Journal of Physics: Conference Series, 2016, 712, 012054.	0.3	4
366	The Influence of Active Phase Loading on the Hydrodeoxygenation (HDO) of Ethylene Glycol over Promoted MoS2/MgAl2O4 Catalysts. Topics in Catalysis, 2019, 62, 752-763.	1.3	4
367	Freisetzung von toxischem HCN bei der Stickoxidreduktion mittels NH 3 â€&CR in mager betriebenen Erdgasmotoren. Angewandte Chemie, 2020, 132, 14530-14535.	1.6	4
368	Versatile and high temperature spectroscopic cell for <i>operando</i> fluorescence and transmission x-ray absorption spectroscopic studies of heterogeneous catalysts. Review of Scientific Instruments, 2021, 92, 023106.	0.6	4
369	Sample Environment for Operando Hard X-ray Tomography—An Enabling Technology for Multimodal Characterization in Heterogeneous Catalysis. Catalysts, 2021, 11, 459.	1.6	4
370	Design of bimetallic Au/Cu nanoparticles in ionic liquids: Synthesis and catalytic properties in 5â€(hydroxymethyl)furfural oxidation. ChemNanoMat, 2021, 7, 1108-1116.	1.5	4
371	Tracking dynamic structural changes in catalysis by rapid 2D-XANES microscopy. Journal of Synchrotron Radiation, 2021, 28, 1518-1527.	1.0	4
372	CHAPTER 6. Hydrodeoxygenation of Lignocellulose-Derived Platform Molecules. RSC Energy and Environment Series, 2014, , 125-150.	0.2	3
373	Lithographically fabricated silicon microreactor for <i>operando</i> QEXAFS studies in exhaust gas catalysis during simulation of a standard driving cycle. Journal of Physics: Conference Series, 2016, 712, 012030.	0.3	3
374	Catalytic CO Oxidation and H2O2 Direct Synthesis over Pd and Pt-Impregnated Titania Nanotubes. Catalysts, 2021, 11, 949.	1.6	3
375	Impact of the Gas Mixture and Aging Conditions on Formaldehyde Conversion over a Series of Commercial Pt-Based Catalysts. , 0, , .		3
376	Determination of a new titanium site in Ti:YA103. Journal of Physics and Chemistry of Solids, 1994, 55, 699-705.	1.9	2
377	Tomographic x-ray absorption spectroscopy. , 2004, , .		2
378	In Situ Monitoring of Ni-based Catalysts during the Synthesis of Propylene Carbonate. AIP Conference Proceedings, 2007, , .	0.3	2

#	Article	IF	CITATIONS
379	Synchrotron Radiation and Neutrons for Catalysis, Materials Research and Development. Synchrotron Radiation News, 2018, 31, 56-58.	0.2	2
380	Effect of NO ₂ on Gas-Phase Reactions in Lean NO _x /NH ₃ /O ₂ /H ₂ O Mixtures at Conditions Relevant for Exhaust Gas Aftertreatment. , 0, , .		2
381	Tomographic XRay Absorption Spectroscopy. Physica Scripta, 2005, , 1026.	1.2	2
382	Continuous-flow reactor setup for <i>operando</i> x-ray absorption spectroscopy of high pressure heterogeneous liquid–solid catalytic processes. Review of Scientific Instruments, 2021, 92, 124101.	0.6	2
383	Monitoring a Catalyst at Work. Chimia, 2006, 60, 709.	0.3	2
384	Understanding the multiple interactions in vanadium-based SCR catalysts during simultaneous NO _{<i>x</i>} and soot abatement. Catalysis Science and Technology, 0, , .	2.1	2
385	Hydrodesoxygenierung von Läulinsäre zu γ-Valerolacton an heterogenen Übergangsmetall-Katalysatoren. Chemie-Ingenieur-Technik, 2012, 84, 1247-1247.	0.4	1
386	Genesis of a Co–Salicylaldimine Complex on Silica Followed in Situ by FTIR and XAS. ChemPhysChem, 2017, 18, 2835-2839.	1.0	1
387	An alternative preparation method for ion exchanged catalysts: Solid-state redox reaction. Studies in Surface Science and Catalysis, 2004, 154, 2192-2199.	1.5	0
388	Preface to the Alfons Baiker Festschrift. Journal of Physical Chemistry C, 2011, 115, 841-841.	1.5	0
389	Catalysis Workshop at ANKA. Synchrotron Radiation News, 2011, 24, 39-40.	0.2	0
390	Electron Microscopy Study of the Deactivation of Nickel Based Catalysts for Bio Oil Hydrodeoxygenation. Microscopy and Microanalysis, 2014, 20, 458-459.	0.2	0
391	XAFS16 at KIT: Five Days of Cutting-Edge X-ray Science in Karlsruhe. Synchrotron Radiation News, 2016, 29, 9-10.	0.2	Ο
392	Flame made ceria supported noble metal catalysts for efficient H ₂ production via the water gas shift reaction. Journal of Physics: Conference Series, 2016, 712, 012065.	0.3	0
393	The 16thInternational Conference on X-ray Absorption Fine Structure (XAFS16). Journal of Physics: Conference Series, 2016, 712, 011001.	0.3	0
394	Inauguration Workshop of the CAT-ACT Beamline for Catalysis and Radionuclide Research at KIT. Synchrotron Radiation News, 2018, 31, 16-19.	0.2	0
395	Transition Metal Catalysis: Moving Frontiers in Transition Metal Catalysis: Synthesis, Characterization and Modeling (Adv. Mater. 26/2019). Advanced Materials, 2019, 31, 1970187.	11.1	0
396	Trendbericht Technische Chemie. Nachrichten Aus Der Chemie, 2019, 67, 50-58.	0.0	0

#	Article	IF	CITATIONS
397	Liquidâ€Phase Synthesis of Highly Reactive Rareâ€Earth Metal Nanoparticles. Angewandte Chemie, 2021, 133, 17513-17517.	1.6	0
398	X-rays to elucidate the structure of catalysts: probing the local and the crystalline structure by XAS and XRD. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c18-c18.	0.3	0
399	Probing catalysis in real time with time-resolved X-ray spectroscopy. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s104-s104.	0.3	0
400	Operando XAS studies on catalysts for energy-related processes. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C1305-C1305.	0.0	0
401	Applications of Operando Hard X-ray Spectroscopy in Energy-Related and Environmental Catalysis. Synchrotron Radiation News, 2020, 33, 11-17.	0.2	0
402	Uncovering Activity-Stability Relationships in Mixed Ir-Based Catalysts Toward Improved Water Electrolysis. ECS Meeting Abstracts, 2022, MA2022-01, 1373-1373.	0.0	0