List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8906671/publications.pdf Version: 2024-02-01

Hult

#	Article	IF	CITATIONS
1	Carbon-Increasing Catalytic Strategies for Upgrading Biomass into Energy-Intensive Fuels and Chemicals. ACS Catalysis, 2018, 8, 148-187.	11.2	267
2	Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Progress in Energy and Combustion Science, 2016, 55, 98-194.	31.2	234
3	Immobilized functional ionic liquids: efficient, green, and reusable catalysts. RSC Advances, 2012, 2, 12525.	3.6	199
4	Acid–Base Bifunctional Zirconium <i>N</i> -Alkyltriphosphate Nanohybrid for Hydrogen Transfer of Biomass-Derived Carboxides. ACS Catalysis, 2016, 6, 7722-7727.	11.2	158
5	Glucose Isomerization by Enzymes and Chemo-catalysts: Status and Current Advances. ACS Catalysis, 2017, 7, 3010-3029.	11.2	154
6	Direct transformation of carbohydrates to the biofuel 5-ethoxymethylfurfural by solid acid catalysts. Green Chemistry, 2016, 18, 726-734.	9.0	151
7	Zeolite and zeotype-catalysed transformations of biofuranic compounds. Green Chemistry, 2016, 18, 5701-5735.	9.0	142
8	Direct conversion of biomass components to the biofuel methyl levulinate catalyzed by acid-base bifunctional zirconia-zeolites. Applied Catalysis B: Environmental, 2017, 200, 182-191.	20.2	124
9	Biomass-derived mesoporous Hf-containing hybrid for efficient Meerwein-Ponndorf-Verley reduction at low temperatures. Applied Catalysis B: Environmental, 2018, 227, 79-89.	20.2	118
10	Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts. Renewable and Sustainable Energy Reviews, 2019, 114, 109296.	16.4	107
11	Magnetically recyclable acidic polymeric ionic liquids decorated with hydrophobic regulators as highly efficient and stable catalysts for biodiesel production. Applied Energy, 2018, 223, 416-429.	10.1	103
12	Cycloamination strategies for renewable N-heterocycles. Green Chemistry, 2020, 22, 582-611.	9.0	100
13	Biodiesel production catalyzed by highly acidic carbonaceous catalysts synthesized via carbonizing lignin in sub- and super-critical ethanol. Applied Catalysis B: Environmental, 2016, 190, 103-114.	20.2	98
14	Cascade catalytic transfer hydrogenation–cyclization of ethyl levulinate to γ-valerolactone with Al–Zr mixed oxides. Applied Catalysis A: General, 2016, 510, 11-19.	4.3	96
15	The recent advances in selfâ€powered medical information sensors. InformaÄnÃ-Materiály, 2020, 2, 212-234.	17.3	96
16	Refreshable Braille Display System Based on Triboelectric Nanogenerator and Dielectric Elastomer. Advanced Functional Materials, 2021, 31, 2006612.	14.9	96
17	Direct Conversion of Sugars and Ethyl Levulinate into γ-Valerolactone with Superparamagnetic Acid–Base Bifunctional ZrFeO _{<i>x</i>} Nanocatalysts. ACS Sustainable Chemistry and Engineering, 2016, 4, 236-246.	6.7	90
18	Heterogeneously Chemo/Enzyme-Functionalized Porous Polymeric Catalysts of High-Performance for Efficient Biodiesel Production. ACS Catalysis, 2019, 9, 10990-11029.	11.2	88

#	Article	IF	CITATIONS
19	Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol with Recyclable Al–Zr@Fe Mixed Oxides. ChemCatChem, 2018, 10, 430-438.	3.7	85
20	Immobilizing Cr3+ with SO3H-functionalized solid polymeric ionic liquids as efficient and reusable catalysts for selective transformation of carbohydrates into 5-hydroxymethylfurfural. Bioresource Technology, 2013, 144, 21-27.	9.6	83
21	Porous Zirconium–Furandicarboxylate Microspheres for Efficient Redox Conversion of Biofuranics. ChemSusChem, 2017, 10, 1761-1770.	6.8	81
22	Nano La2O3 as a heterogeneous catalyst for biodiesel synthesis by transesterification of Jatropha curcas L. oil. Journal of Industrial and Engineering Chemistry, 2015, 31, 385-392.	5.8	78
23	Orderly Layered Zrâ€Benzylphosphonate Nanohybrids for Efficient Acid–Baseâ€Mediated Bifunctional/Cascade Catalysis. ChemSusChem, 2017, 10, 681-686.	6.8	77
24	Efficient production of biodiesel with promising fuel properties from Koelreuteria integrifoliola oil using a magnetically recyclable acidic ionic liquid. Energy Conversion and Management, 2017, 138, 45-53.	9.2	76
25	Efficient and green production of biodiesel catalyzed by recyclable biomass-derived magnetic acids. Fuel Processing Technology, 2018, 181, 259-267.	7.2	71
26	Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid–base bifunctional hybrid nanospheres. Energy Conversion and Management, 2014, 88, 1245-1251.	9.2	70
27	Effective production of biodiesel from non-edible oil using facile synthesis of imidazolium salts-based BrÃ,nsted-Lewis solid acid and co-solvent. Energy Conversion and Management, 2018, 166, 534-544.	9.2	70
28	Functionalized magnetic nanosized materials for efficient biodiesel synthesis <i>via</i> acid–base/enzyme catalysis. Green Chemistry, 2020, 22, 2977-3012.	9.0	70
29	N-formyl-stabilizing quasi-catalytic species afford rapid and selective solvent-free amination of biomass-derived feedstocks. Nature Communications, 2019, 10, 699.	12.8	69
30	One-pot transformation of polysaccharides via multi-catalytic processes. Catalysis Science and Technology, 2014, 4, 4138-4168.	4.1	68
31	Eco-friendly acetylcholine-carboxylate bio-ionic liquids for controllable <i>N</i> -methylation and <i>N</i> -formylation using ambient CO ₂ at low temperatures. Green Chemistry, 2019, 21, 567-577.	9.0	68
32	Acidic ionic liquid-functionalized mesoporous melamine-formaldehyde polymer as heterogeneous catalyst for biodiesel production. Fuel, 2019, 239, 886-895.	6.4	68
33	Efficient catalytic transfer hydrogenation of biomass-based furfural to furfuryl alcohol with recycable Hf-phenylphosphonate nanohybrids. Catalysis Today, 2019, 319, 84-92.	4.4	68
34	Hydrophobic Pd nanocatalysts for one-pot and high-yield production of liquid furanic biofuels at low temperatures. Applied Catalysis B: Environmental, 2017, 215, 18-27.	20.2	67
35	Electro―and Photocatalytic Oxidative Upgrading of Bioâ€based 5â€Hydroxymethylfurfural. ChemSusChem, 2022, 15, .	6.8	67
36	Mesoporous polymeric solid acid as efficient catalyst for (trans)esterification of crude Jatropha curcas oil. Fuel Processing Technology, 2016, 150, 50-57.	7.2	63

#	Article	IF	CITATIONS
37	TiO ₂ -Based Water-Tolerant Acid Catalysis for Biomass-Based Fuels and Chemicals. ACS Catalysis, 2020, 10, 9555-9584.	11.2	63
38	Organocatalytic Asymmetric Hydrophosphonylation/Mannich Reactions Using Thiourea, Cinchona and BrA,nsted Acid Catalysts. Synlett, 2012, 23, 1108-1131.	1.8	62
39	InCl3-ionic liquid catalytic system for efficient and selective conversion of cellulose into 5-hydroxymethylfurfural. RSC Advances, 2013, 3, 3648.	3.6	61
40	A Pd-Catalyzed in situ domino process for mild and quantitative production of 2,5-dimethylfuran directly from carbohydrates. Green Chemistry, 2017, 19, 2101-2106.	9.0	61
41	Reversible Conversion between Schottky and Ohmic Contacts for Highly Sensitive, Multifunctional Biosensors. Advanced Functional Materials, 2020, 30, 1907999.	14.9	61
42	Metal–organic framework-based functional catalytic materials for biodiesel production: a review. Green Chemistry, 2021, 23, 2595-2618.	9.0	60
43	Efficient catalytic conversion of carbohydrates into 5-ethoxymethylfurfural over MIL-101-based sulfated porous coordination polymers. Journal of Energy Chemistry, 2016, 25, 523-530.	12.9	58
44	Production of biodiesel from non-edible herbaceous vegetable oil: Xanthium sibiricum Patr. Bioresource Technology, 2013, 140, 435-438.	9.6	56
45	Selective Hydrodeoxygenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran over Alloyed Cuâ^'Ni Encapsulated in Biochar Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 19556-19569.	6.7	56
46	Advances in Pretreatment of Straw Biomass for Sugar Production. Frontiers in Chemistry, 2021, 9, 696030.	3.6	55
47	Production and fuel properties of biodiesel from Firmiana platanifolia L.f. as a potential non-food oil source. Industrial Crops and Products, 2015, 76, 768-771.	5.2	54
48	Catalytic conversion of glucose to 5-hydroxymethylfurfural over nano-sized mesoporous Al2O3–B2O3 solid acids. Catalysis Communications, 2015, 62, 19-23.	3.3	52
49	Direct Catalytic Transformation of Biomass Derivatives into Biofuel Component γâ€Valerolactone with Magnetic Nickel–Zirconium Nanoparticles. ChemPlusChem, 2016, 81, 135-142.	2.8	52
50	Catalytic Alkylation of 2-Methylfuran with Formalin Using Supported Acidic Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2015, 3, 3274-3280.	6.7	50
51	Furan-type Compounds from Carbohydrates via Heterogeneous Catalysis. Current Organic Chemistry, 2014, 18, 547-597.	1.6	49
52	Dual acidic mesoporous KIT silicates enable one-pot production of γ-valerolactone from biomass derivatives via cascade reactions. Renewable Energy, 2020, 146, 359-370.	8.9	48
53	Hydrothermal amination of biomass to nitrogenous chemicals. Green Chemistry, 2021, 23, 6675-6697.	9.0	48
54	Direct production of biodiesel from waste oils with a strong solid base from alkalized industrial clay ash. Applied Energy, 2020, 264, 114735.	10.1	45

#	Article	IF	CITATIONS
55	Magnetically recyclable basic polymeric ionic liquids for efficient transesterification of Firmiana platanifolia L.f. oil into biodiesel. Energy Conversion and Management, 2017, 153, 462-472.	9.2	44
56	Sulfonic acid-functionalized heterogeneous catalytic materials for efficient biodiesel production: A review. Journal of Environmental Chemical Engineering, 2021, 9, 104719.	6.7	42
57	Efficient conversion of furfuryl alcohol to ethyl levulinate with sulfonic acid-functionalized MIL-101(Cr). RSC Advances, 2016, 6, 90232-90238.	3.6	41
58	Polymeric Ionic Hybrid as Solid Acid Catalyst for the Selective Conversion of Fructose and Glucose to 5â€Hydroxymethylfurfural. Energy Technology, 2013, 1, 151-156.	3.8	40
59	Catalytic transfer hydrogenation of ethyl levulinate into Î ³ -valerolactone over mesoporous Zr/B mixed oxides. Journal of Industrial and Engineering Chemistry, 2016, 43, 133-141.	5.8	36
60	Catalytic conversion of carbohydrates to levulinic acid with mesoporous niobium-containing oxides. Catalysis Communications, 2017, 93, 20-24.	3.3	34
61	Porous Ti/Zr Microspheres for Efficient Transfer Hydrogenation of Biobased Ethyl Levulinate to Î ³ -Valerolactone. ACS Omega, 2017, 2, 1047-1054.	3.5	34
62	Subcritical water gasification of lignocellulosic wastes for hydrogen production with Co modified Ni/Al2O3 catalysts. Journal of Supercritical Fluids, 2020, 162, 104863.	3.2	34
63	Heterogeneous ZnO-containing catalysts for efficient biodiesel production. RSC Advances, 2021, 11, 20465-20478.	3.6	33
64	Catalytic high-yield biodiesel production from fatty acids and non-food oils over a magnetically separable acid nanosphere. Industrial Crops and Products, 2021, 173, 114126.	5.2	33
65	Heterogeneous Catalytic Upgrading of Biofuranic Aldehydes to Alcohols. Frontiers in Chemistry, 2019, 7, 529.	3.6	32
66	Heterogeneous (de)chlorination-enabled control of reactivity in the liquid-phase synthesis of furanic biofuel from cellulosic feedstock. Green Chemistry, 2020, 22, 637-645.	9.0	32
67	Quantitative synthesis of 2,5-bis(hydroxymethyl)furan from biomass-derived 5-hydroxymethylfurfural and sugars over reusable solid catalysts at low temperatures. Fuel, 2018, 217, 365-369.	6.4	31
68	Control of selectivity in hydrosilane-promoted heterogeneous palladium-catalysed reduction of furfural and aromatic carboxides. Communications Chemistry, 2018, 1, .	4.5	31
69	Electrovalent bifunctional acid enables heterogeneously catalytic production of biodiesel by (trans)esterification of non-edible oils. Fuel, 2022, 310, 122273.	6.4	31
70	Catalytic Upgrading of Biomassâ€Đerived Sugars with Acidic Nanoporous Materials: Structural Role in Carbonâ€Chain Length Variation. ChemSusChem, 2019, 12, 347-378.	6.8	30
71	Noble metal-free upgrading of multi-unsaturated biomass derivatives at room temperature: silyl species enable reactivity. Green Chemistry, 2018, 20, 5327-5335.	9.0	28
72	Advances in Diels–Alder/aromatization of biomass furan derivatives towards renewable aromatic hydrocarbons. Catalysis Science and Technology, 2022, 12, 1902-1921.	4.1	28

#	Article	IF	CITATIONS
73	Direct production of biodiesel from crude Euphorbia lathyris L. Oil catalyzed by multifunctional mesoporous composite materials. Fuel, 2022, 309, 122172.	6.4	27
74	Visible-light-driven prompt and quantitative production of lactic acid from biomass sugars over a N-TiO ₂ photothermal catalyst. Green Chemistry, 2021, 23, 10039-10049.	9.0	27
75	Simply Assembly of Acidic Nanospheres for Efficient Production of 5â€Ethoxymethylfurfural from 5â€Hydromethylfurfural and Fructose. Energy Technology, 2017, 5, 2046-2054.	3.8	26
76	A Facile Direct Route to <i>N</i> â€(Un)substituted Lactams by Cycloamination of Oxocarboxylic Acids without External Hydrogen. ChemSusChem, 2019, 12, 3778-3784.	6.8	26
77	Lignin-derived layered 3D biochar with controllable acidity for enhanced catalytic upgrading of Jatropha oil to biodiesel. Catalysis Today, 2022, 404, 35-48.	4.4	26
78	Synergetic combination of a mesoporous polymeric acid and a base enables highly efficient heterogeneous catalytic one-pot conversion of crude <i>Jatropha</i> oil into biodiesel. Green Chemistry, 2020, 22, 1698-1709.	9.0	25
79	Efficient Catalytic Production of Biodiesel with Acid-Base Bifunctional Rod-Like Ca-B Oxides by the Sol-Gel Approach. Materials, 2019, 12, 83.	2.9	24
80	A facile, low-cost route for the preparation of calcined porous calcite and dolomite and their application as heterogeneous catalysts in biodiesel production. Catalysis Science and Technology, 2013, 3, 2244.	4.1	23
81	Heteropoly Acid-Based Catalysts for Hydrolytic Depolymerization of Cellulosic Biomass. Frontiers in Chemistry, 2020, 8, 580146.	3.6	23
82	Advances in the Catalytic Reductive Amination of Furfural to Furfural Amine: The Momentous Role of Active Metal Sites. ChemSusChem, 2022, 15, .	6.8	22
83	Modified Porous Zr–Mo Mixed Oxides as Strong Acid Catalysts for Biodiesel Production. Energy Technology, 2013, 1, 735-742.	3.8	21
84	Acid–Base Bifunctional Hf Nanohybrids Enable High Selectivity in the Catalytic Conversion of Ethyl Levulinate to γ-Valerolactone. Catalysts, 2018, 8, 264.	3.5	21
85	Endogenous X–Cî€O species enable catalyst-free formylation prerequisite for CO ₂ reductive upgrading. Green Chemistry, 2020, 22, 5822-5832.	9.0	21
86	Efficient conversion of glucose to 5-hydroxymethylfurfural using bifunctional partially hydroxylated AlF ₃ . RSC Advances, 2016, 6, 12782-12787.	3.6	20
87	Recent advances in liquid hydrosilane-mediated catalytic <i>N</i> -formylation of amines with CO ₂ . RSC Advances, 2020, 10, 33972-34005.	3.6	20
88	CO ₂ â€Enabled Biomass Fractionation/Depolymerization: A Highly Versatile Preâ€&tep for Downstream Processing. ChemSusChem, 2020, 13, 3565-3582.	6.8	20
89	Facile and Low-cost Synthesis of Mesoporous Ti–Mo Bi-metal Oxide Catalysts for Biodiesel Production from Esterification of Free Fatty Acids in <i>Jatropha curcas</i> Crude Oil. Journal of Oleo Science, 2018, 67, 579-588.	1.4	19
90	Carbonate-Catalyzed Room-Temperature Selective Reduction of Biomass-Derived 5-Hydroxymethylfurfural into 2,5-Bis(hydroxymethyl)furan. Catalysts, 2018, 8, 633.	3.5	19

#	Article	IF	CITATIONS
91	ZrOCl ₂ as a bifunctional and <i>in situ</i> precursor material for catalytic hydrogen transfer of bio-based carboxides. Sustainable Energy and Fuels, 2020, 4, 3102-3114.	4.9	19
92	Ammonia borane-enabled hydrogen transfer processes: Insights into catalytic strategies and mechanisms. Green Energy and Environment, 2023, 8, 948-971.	8.7	19
93	Catalytic Transformation of Fructose and Sucrose to HMF with Proline-Derived Ionic Liquids under Mild Conditions. International Journal of Chemical Engineering, 2014, 2014, 1-7.	2.4	18
94	Highly Recyclable Fluoride for Enhanced Cascade Hydrosilylation–Cyclization of Levulinates to γ-Valerolactone at Low Temperatures. ACS Sustainable Chemistry and Engineering, 2017, 5, 9640-9644.	6.7	18
95	Efficient Transfer Hydrogenation of Nitro Compounds to Amines Enabled by Mesoporous N-Stabilized Co-Zn/C. Frontiers in Chemistry, 2019, 7, 590.	3.6	18
96	Quasi-Catalytic Approach to N-Unprotected Lactams via Transfer Hydro-amination/Cyclization of Biobased Keto Acids. ACS Sustainable Chemistry and Engineering, 2019, 7, 10207-10213.	6.7	18
97	A substituent- and temperature-controllable NHC-derived zwitterionic catalyst enables CO ₂ upgrading for high-efficiency construction of formamides and benzimidazoles. Green Chemistry, 2021, 23, 5759-5765.	9.0	18
98	Quantitative hydrogenation of furfural to furfuryl alcohol with recyclable KF and hydrosilane at room temperature in minutes. Catalysis Communications, 2018, 105, 6-10.	3.3	17
99	Efficient Catalytic Upgradation of Bio-Based Furfuryl Alcohol to Ethyl Levulinate Using Mesoporous Acidic MIL-101(Cr). ACS Omega, 2019, 4, 8390-8399.	3.5	17
100	One Pot Cascade Conversion of Bio-Based Furfural to Levulinic Acid with Cu-Doped Niobium Phosphate Catalysts. Waste and Biomass Valorization, 2019, 10, 1141-1150.	3.4	17
101	Chemoselective Synthesis of Dithioacetals from Bioâ€eldehydes with Zeolites under Ambient and Solventâ€free Conditions. ChemCatChem, 2017, 9, 1097-1104.	3.7	16
102	Solvents take control. Nature Catalysis, 2018, 1, 176-177.	34.4	16
103	Phosphotungstic acid heterogenized by assembly with pyridines for efficient catalytic conversion of fructose to methyl levulinate. RSC Advances, 2018, 8, 16585-16592.	3.6	15
104	Low-temperature catalytic hydrogenation of bio-based furfural and relevant aldehydes using cesium carbonate and hydrosiloxane. RSC Advances, 2019, 9, 3063-3071.	3.6	15
105	Antioxidant responses and photosynthetic behaviors of Kappaphycus alvarezii and Kappaphycus striatum (Rhodophyta, Solieriaceae) during low temperature stress. , 2016, 57, 21.		14
106	Production of bio-based furfural from xylose over a recyclable niobium phosphate (NbOPO ₃) catalyst. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 2072-2077.	2.3	13
107	Progress of Catalytic Valorization of Bio-Glycerol with Urea into Glycerol Carbonate as a Monomer for Polymeric Materials. Advances in Polymer Technology, 2020, 2020, 1-17.	1.7	13
108	Effects of low temperature stress on the antioxidant system and photosynthetic apparatus of <i>Kappaphycus alvarezii</i> (Rhodophyta, Solieriaceae). Marine Biology Research, 2016, 12, 1064-1077.	0.7	12

#	Article	IF	CITATIONS
109	Low-temperature and solvent-free production of biomass-derived diesel-range C17 precursor via one-pot cascade acylation–alkylation over Sn4+-montmorillonite. Journal of Industrial and Engineering Chemistry, 2018, 66, 325-332.	5.8	12
110	Hot water-promoted catalyst-free reductive cycloamination of (bio-)keto acids with HCOONH4 toward cyclic amides. Journal of Supercritical Fluids, 2020, 157, 104698.	3.2	12
111	Functional Nanomaterials-Catalyzed Production of Biodiesel. Current Nanoscience, 2020, 16, 376-391.	1.2	12
112	An Overview of Metal-organic Frameworks-based Acid/Base Catalysts for Biofuel Synthesis. Current Organic Chemistry, 2020, 24, 1876-1891.	1.6	12
113	Recent Progress Towards Transition Metal-Catalyzed Direct Conversion of Cellulose to 5-Hydroxymethylfurfural. Current Catalysis, 2012, 1, 221-232.	0.5	12
114	Catalytic Tandem Reaction for the Production of Jet and Diesel Fuel Range Alkanes. Energy Technology, 2018, 6, 1060-1066.	3.8	11
115	Industrialization of a FeSiBNbCu nanocrystalline alloy with high Bs of 1.39ÂT and outstanding soft magnetic properties. Journal of Materials Science: Materials in Electronics, 2018, 29, 19517-19523.	2.2	11
116	Efficient Catalytic Upgrade of Fructose to Alkyl Levulinates with Phenylpyridine- phosphotungstate Solid Hybrids. Current Green Chemistry, 2019, 6, 44-52.	1.1	11
117	Nanospheric heterogeneous acid-enabled direct upgrading of biomass feedstocks to novel benzimidazoles with potent antibacterial activities. Industrial Crops and Products, 2020, 150, 112406.	5.2	11
118	Solid Acid-Base Bifunctional Catalysts in Organic Transformations. Current Catalysis, 2013, 2, 173-212.	0.5	11
119	One-step catalytic upgrading of bio-based furfural to γ-valerolactone actuated by coordination organophosphate–Hf polymers. Sustainable Energy and Fuels, 2022, 6, 484-501.	4.9	11
120	Selective transformation of carbohydrates into HMF promoted by carboxylic acids modified ZrMo mixed oxides. Biomass Conversion and Biorefinery, 2014, 4, 59-66.	4.6	10
121	Low-cost acetate-catalyzed efficient synthesis of benzimidazoles using ambient CO2 as a carbon source under mild conditions. Sustainable Chemistry and Pharmacy, 2020, 17, 100276.	3.3	10
122	Catalytic Upgrading of Bioâ€Based 5â€Hydroxymethylfurfural to 2,5â€Dimethylfuran with Nonâ€Noble Metals. Energy Technology, 2021, 9, 2100653.	3.8	10
123	Singleâ€Atom Catalystsâ€Enabled Reductive Upgrading of CO ₂ . ChemCatChem, 2021, 13, 4859-4877.	3.7	10
124	Efficient Production of Methyl Oleate Using a Biomass-Based Solid Polymeric Catalyst with High Acid Density. Advances in Polymer Technology, 2019, 2019, 1-11.	1.7	9
125	Pd-catalysed formation of ester products from cascade reaction of 5-hydroxymethylfurfural with 1-hexene. Applied Catalysis A: General, 2019, 569, 170-174.	4.3	9
126	One-step upgrading of bio-based furfural to γ-valerolactone <i>via</i> HfCl ₄ -mediated bifunctional catalysis. RSC Advances, 2021, 11, 35415-35424.	3.6	9

#	Article	IF	CITATIONS
127	Carboxylateâ€Functionalized Zeolitic Imidazolate Framework Enables Catalytic Nâ€Formylation Using Ambient CO ₂ . Advanced Sustainable Systems, 2022, 6, .	5.3	9
128	Chemocatalytic Production of Lactates from Biomass-Derived Sugars. International Journal of Chemical Engineering, 2018, 2018, 1-18.	2.4	8
129	Furfural as a renewable chemical platform for furfuryl alcohol production. , 2020, , 299-322.		8
130	Sn-Beta Catalyzed Transformations of Sugars—Advances in Catalyst and Applications. Catalysts, 2022, 12, 405.	3.5	8
131	Catalytic Cascade Dehydration-Etherification of Fructose into 5-Ethoxymethylfurfural with SO _{3} H-Functionalized Polymers. International Journal of Chemical Engineering, 2014, 2014, 1-7.	2.4	7
132	Sustainable Conversion of Biomass-derived Carbohydrates into Lactic Acid Using Heterogeneous Catalysts. Current Green Chemistry, 2020, 7, 282-289.	1.1	7
133	Catalytic Stereoselective Conversion of Biomass-Derived 4′-Methoxypropiophenone to Trans-Anethole with a Bifunctional and Recyclable Hf-Based Polymeric Nanocatalyst. Polymers, 2021, 13, 2808.	4.5	7
134	Alcohol-mediated Reduction of Biomass-derived Furanic Aldehydes via Catalytic Hydrogen Transfer. Current Organic Chemistry, 2019, 23, 2168-2179.	1.6	7
135	Catalytic Valorization of Cellulose and Cellobiose with Nanoparticles. Current Nanoscience, 2014, 11, 1-14.	1.2	7
136	Hierarchical Porous MIL-101(Cr) Solid Acid-Catalyzed Production of Value-Added Acetals from Biomass-Derived Furfural. Polymers, 2021, 13, 3498.	4.5	6
137	Magnetic solid sulfonic acid-enabled direct catalytic production of biomass-derived <i>N</i> -substituted pyrroles. New Journal of Chemistry, 2022, 46, 5312-5320.	2.8	6
138	Rapid and efficient conversion of bio-based sugar to 5-hydroxymethylfurfural using amino-acid derived catalysts. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 2632-2639.	2.3	5
139	Heterogeneous Prolinamide-Catalyzed Atom-Economical Synthesis of Î ² -Thioketones from Bio-Based Enones. ACS Omega, 2019, 4, 8588-8597.	3.5	5
140	F-containing ionic liquid–catalyzed benign and rapid hydrogenation of bio-based furfural and relevant aldehydes using siloxane as hydrogen source. Biomass Conversion and Biorefinery, 2020, 10, 795-802.	4.6	5
141	Advances in Heterogeneously Catalytic Degradation of Biomass Saccharides with Ordered-Nanoporous Materials. Industrial & Engineering Chemistry Research, 2020, 59, 16970-16986.	3.7	5
142	Selectivity Control of C-O Bond Cleavage for Catalytic Biomass Valorization. Frontiers in Energy Research, 2022, 9, .	2.3	5
143	Recent Biotechnology Advances in Bio-Conversion of Lignin to Lipids by Bacterial Cultures. Frontiers in Chemistry, 2022, 10, 894593.	3.6	5
144	Research Progress on the Photo-Driven Catalytic Production of Biodiesel. Frontiers in Chemistry, 2022, 10, 904251.	3.6	5

#	Article	IF	CITATIONS
145	Efficient Production of 5-Hydroxymethylfurfural from Carbohydrates Catalyzed by Mesoporous Al–B Hybrids. Waste and Biomass Valorization, 2017, 8, 1371-1378.	3.4	4
146	Highly Selective Reduction of Bio-Based Furfural to Furfuryl Alcohol Catalyzed by Supported KF with Polymethylhydrosiloxane (PMHS). Journal of Chemistry, 2020, 2020, 1-10.	1.9	4
147	Room-temperature quasi-catalytic hydrogen generation from waste and water. Green Chemistry, 2021, 23, 7528-7533.	9.0	4
148	Electrocatalytic Oxidation of Biomass-derived 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic acid Coupled with H2 Evolution. Current Organic Chemistry, 2021, 25, .	1.6	4
149	Mesoporous tin phosphate as an effective catalyst for fast cyclodehydration of bio-based citral into p-cymene. Molecular Catalysis, 2021, 515, 111887.	2.0	4
150	Chemoselective Oxidation of Bio-Glycerol with Nano-Sized Metal Catalysts. Mini-Reviews in Organic Chemistry, 2015, 12, 162-177.	1.3	4
151	Catalytic Transfer Hydrogenation of Biomass-derived Levulinates to Î ³ -valerolactone Using Alcohols as H-donors. Current Green Chemistry, 2020, 7, 304-313.	1.1	4
152	Protophilic solvent-impelled quasi-catalytic CO2 valorization to formic acid and N-formamides. Fuel, 2022, 326, 125074.	6.4	4
153	Fundamentals of Bifunctional Catalysis for Transforming Biomass-Related Compounds into Chemicals and Biofuels. Biofuels and Biorefineries, 2017, , 3-30.	0.5	3
154	Porous Zrâ€Bibenzyldiphosphonate Nanohybrid with Extra Hydroxy Species for Enhancive Upgrading of Biomassâ€Based Levulinates. ChemistrySelect, 2018, 3, 4252-4261.	1.5	3
155	Tetraethylammonium Fluoride-mediated A Green Hydrogen Transfer Process for Selective Reduction of Biomass-derived Aldehydes. Current Green Chemistry, 2019, 6, 127-134.	1.1	3
156	Lactic acid/lactates production from biomass over chemocatalytic strategies. , 2020, , 227-257.		3
157	Sustainable and rapid production of biofuel γ-valerolactone from biomass-derived levulinate enabled by a fluoride-ionic liquid. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2021, 43, 905-915.	2.3	3
158	Catalytic cascade acetylation-alkylation of biofuran to C17 diesel precursor enabled by a budget acid-switchable catalyst. Chinese Journal of Chemical Engineering, 2021, 34, 171-179.	3.5	3
159	Catalytic Dimerization of Bio-Based 5-methylfurfuryl Alcohol to Bis(5-methylfuran-2-yl) Methane with a Solid Acidic Nanohybrid. Current Nanoscience, 2020, 16, 235-245.	1.2	3
160	Catalytic Synthesis of the Biofuel 5-Ethoxymethylfurfural (EMF) from Biomass Sugars. Journal of Chemistry, 2021, 2021, 1-16.	1.9	3
161	n-Butyllithium. Synlett, 2012, 23, 1407-1408.	1.8	2
162	Bioabsorbable Capacitors: Fully Bioabsorbable Capacitor as an Energy Storage Unit for Implantable Medical Electronics (Adv. Sci. 6/2019). Advanced Science, 2019, 6, 1970035.	11.2	2

#	Article	IF	CITATIONS
163	Green Technologies for Biomass Upgrading and Relevant Processes. Current Organic Chemistry, 2019, 23, 2143-2144.	1.6	2
164	Zeolite-related catalysts for biomass-derived sugar valorization. , 2020, , 141-159.		2
165	Sustainable Catalyst-free N-formylation using CO2 as a Carbon Source. Current Organic Synthesis, 2022, 19, 187-196.	1.3	2
166	Reductive Upgrading of Biomass-Based Levulinic Acid to γ-Valerolactone Over Ru-Based Single-Atom Catalysts. Frontiers in Chemistry, 2022, 10, 895198.	3.6	2
167	A New Lamellar Biocarbon Catalyst with Enhanced Acidity and Contact Sites for Efficient Biodiesel Production. Waste and Biomass Valorization, 2022, 13, 4223-4238.	3.4	2
168	Differences in photosynthetic behaviour of <i>Kappaphycus alvarezii</i> and <i>Kappaphycus striatus</i> during dehydration and rehydration. Marine Biology Research, 2015, 11, 765-772.	0.7	1
169	3-Bromopyridine-Heterogenized Phosphotungstic Acid for Efficient Trimerization of Biomass-Derived 5-Hydroxymethylfurfural with 2-Methylfuran to C ₂₁ Fuel Precursor. Advances in Polymer Technology, 2020, 2020, 1-12.	1.7	1
170	One-pot domino conversion of biomass-derived furfural to γ-valerolactone with an in-situ formed bifunctional catalyst. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-17.	2.3	1
171	Catalytic conversion of acrolein and acrylic acid drop-ins for added-value chemicals. , 2022, , 47-62.		1
172	Green Processes Toward Bioproducts. Current Green Chemistry, 2020, 7, 258-258.	1.1	1
173	Low-temperature reduction of bio-based cinnamaldehyde to α,β-(un)saturated alcohols enabled by a waste-derived catalyst. Catalysis Communications, 2022, 162, 106391.	3.3	1
174	Editorial (Thematic Issue: Multi-Catalysis for Efficient Biomass Conversions and Organic) Tj ETQq0 0 0 rgBT /Ove	rlock 10 T	f 50 302 Td (1
175	Conversion of Lignocellulosic Biomass and Derivatives into Value-Added Heteroatom-Containing Compounds. Journal of Chemistry, 2020, 2020, 1-2.	1.9	0
176	Room-temperature selective hydrogenation of unsaturated biomass feedstocks enabled by hydrosilane and eggshell-derived catalyst with enhanced basicity and hydrophobicity. Biomass Conversion and Biorefinery, 2024, 14, 1663-1677.	4.6	0
177	Thermal catalytic conversion of bioderived oils to biodiesel with sulfonic acid–functionalized solid materials. , 2022, , 163-209.		0
178	Catalytic upgrading of CO2 to N-formamides. , 2022, , 613-639.		0
179	Pretreatment methods for converting straws into fermentable sugars. , 2022, , 117-162.		0
180	Lignin-Derived Ternary Polymeric Carbon as a Green Catalyst for Ethyl Levulinate Upgrading from Fructose. Catalysts, 2022, 12, 778.	3.5	0