
Sina Naserian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8906623/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Innate immunity: Trained immunity and innate allorecognition against the allograft. International Reviews of Immunology, 2022, 41, 275-282.	1.5	6
2	Enhanced High Mutation Rate and Natural Selection to Produce Attenuated Viral Vaccine with CRISPR Toolkit in RNA Viruses especially SARS-CoV-2. Infection, Genetics and Evolution, 2022, 97, 105188.	1.0	4
3	Weighted correlation network analysis revealed novel long non-coding RNAs for colorectal cancer. Scientific Reports, 2022, 12, 2990.	1.6	11
4	Principles and Applications of CRISPR Toolkit in Virus Manipulation, Diagnosis, and Virus-Host Interactions. Cells, 2022, 11, 999.	1.8	3
5	Optimization of IL-1RA structure to achieve a smaller protein with a higher affinity to its receptor. Scientific Reports, 2022, 12, 7483.	1.6	2
6	A compact integrated microfluidic oxygenator with high gas exchange efficiency and compatibility for long-lasting endothelialization. Lab on A Chip, 2021, 21, 4791-4804.	3.1	14
7	Post-decellularization techniques ameliorate cartilage decellularization process for tissue engineering applications. Journal of Tissue Engineering, 2021, 12, 204173142098356.	2.3	20
8	TNFα priming through its interaction with TNFR2 enhances endothelial progenitor cell immunosuppressive effect: new hope for their widespread clinical application. Cell Communication and Signaling, 2021, 19, 1.	2.7	52
9	Human fetal liver MSCs are more effective than adult bone marrow MSCs for their immunosuppressive, immunomodulatory, and Foxp3+ T reg induction capacity. Stem Cell Research and Therapy, 2021, 12, 138.	2.4	20
10	Single-cell transcriptomic profiling and characterization of endothelial progenitor cells: new approach for finding novel markers. Stem Cell Research and Therapy, 2021, 12, 145.	2.4	17
11	Cord Blood Derived Endothelial Progenitor Cells Are More Immunosuppressive and Immunomodulator than Their Adult Peripheral Blood Counterparts. Biomedical and Health Research, 2021, , .	0.0	0
12	Differences and similarities between mesenchymal stem cell and endothelial progenitor cell immunoregulatory properties against T cells. World Journal of Stem Cells, 2021, 13, 971-984.	1.3	17
13	TNFα/TNFR2 signaling pathway: an active immune checkpoint for mesenchymal stem cell immunoregulatory function. Stem Cell Research and Therapy, 2020, 11, 281.	2.4	49
14	TNFR2 Is a Crucial Hub Controlling Mesenchymal Stem Cell Biological and Functional Properties. Frontiers in Cell and Developmental Biology, 2020, 8, 596831.	1.8	38
15	TNFα-TNFR2 signaling pathway in control of the neural stem/progenitor cell immunosuppressive effect: Different experimental approaches to assess this hypothetical mechanism behind their immunological function. Stem Cell Research and Therapy, 2020, 11, 307.	2.4	17
16	Regulatory T cell induction by mesenchymal stem cells depends on the expression of TNFR2 by T cells. Stem Cell Research and Therapy, 2020, 11, 534.	2.4	26
17	The TNF/TNFR2 signaling pathway is a key regulatory factor in endothelial progenitor cell immunosuppressive effect. Cell Communication and Signaling, 2020, 18, 94.	2.7	60
18	Different approaches for transformation of mesenchymal stem cells into hepatocyte-like cells. Stem Cell Research and Therapy, 2020, 11, 54.	2.4	58

SINA NASERIAN

#	Article	IF	CITATIONS
19	Current Preventions and Treatments of aGVHD: From Pharmacological Prophylaxis to Innovative Therapies. Frontiers in Immunology, 2020, 11, 607030.	2.2	14
20	An overview of applications of CRISPR-Cas technologies in biomedical engineering. Folia Histochemica Et Cytobiologica, 2020, 58, 163-173.	0.6	5
21	Development of Bio-Artificial Micro-Vessels with Immunosuppressive Capacities: A Hope for Future Transplantations and Organoids. Blood, 2019, 134, 3610-3610.	0.6	9
22	Induction of CD4+CD25+Foxp3+ regulatory T cells by mesenchymal stem cells is associated with RUNX complex factors. Immunologic Research, 2018, 66, 207-218.	1.3	26
23	Circulating endothelial progenitors in vascular repair. Journal of Cellular Immunotherapy, 2018, 4, 13-17.	0.6	5
24	Induction of CD4+CD25+FOXP3+ regulatory T cells by mesenchymal stem cells is associated with modulation of ubiquitination factors and TSDR demethylation. Stem Cell Research and Therapy, 2018, 9, 273.	2.4	31
25	Differentiation of umbilical cord derived mesenchymal stem cells to hepatocyte cells by transfection of miR-106a, miR-574-3p, and miR-451. Gene, 2018, 667, 1-9.	1.0	22
26	Simple, Reproducible, and Efficient Clinical Grading System for Murine Models of Acute Graft-versus-Host Disease. Frontiers in Immunology, 2018, 9, 10.	2.2	52
27	Mesenchymal stem cells can induce regulatory T cells via modulating miR-126a but not miR-10a. Gene, 2017, 627, 327-336.	1.0	30
28	Delayed and short course of rapamycin prevents organ rejection after allogeneic liver transplantation in rats. World Journal of Gastroenterology, 2017, 23, 6962-6972.	1.4	18
29	Control of GVHD by regulatory T cells depends on TNF produced by T cells and TNFR2 expressed by regulatory T cells. Blood, 2016, 128, 1651-1659.	0.6	109
30	Administration of Low Doses of IL-2 Combined to Rapamycin Promotes Allogeneic Skin Graft Survival in Mice. American Journal of Transplantation, 2014, 14, 2874-2882.	2.6	37
31	MS505 THE RELATION BETWEEN PREGNANCY AND ACCUMULATION OF FAT AROUND HEART. Atherosclerosis Supplements, 2010, 11, 211.	1.2	0