
Michael D Pluth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8906543/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Esterase-Activated Perthiocarbonate Persulfide Donors Provide Insights into Persulfide Persistence and Stability. ACS Chemical Biology, 2022, 17, 331-339.	3.4	9
2	C–Hâ<⁻S hydrogen bonding interactions. Chemical Society Reviews, 2022, 51, 1454-1469.	38.1	35
3	Efficient inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by sulfuration with solubilized elemental sulfur. Free Radical Biology and Medicine, 2022, 185, 46-51.	2.9	5
4	Thionitrite (SNO ^{â^'}) and Perthionitrite (SSNO ^{â^'}) are Simple Synthons for Nitrosylated Iron Sulfur Clusters. Angewandte Chemie - International Edition, 2022, 61, .	13.8	7
5	Thionitrite (SNO ^{â^'}) and Perthionitrite (SSNO ^{â^'}) are Simple Synthons for Nitrosylated Iron Sulfur Clusters. Angewandte Chemie, 2022, 134, .	2.0	1
6	A Cell Trappable Methyl Rhodolâ€Based Fluorescent Probe for Hydrogen Sulfide Detection. Chemistry - an Asian Journal, 2022, 17, .	3.3	8
7	Direct comparison of triggering motifs on chemiluminescent probes for hydrogen sulfide detection in water. Sensors and Actuators B: Chemical, 2021, 329, 129235.	7.8	23
8	Deuterium equilibrium isotope effects in a supramolecular receptor for the hydrochalcogenide and halide anions. RSC Advances, 2021, 11, 26581-26585.	3.6	0
9	Hydrosulfide-selective ChemFETs for aqueous H2S/HSâ^' measurement. Sensing and Bio-Sensing Research, 2021, 31, 100394.	4.2	6
10	Potentiometric measurement of barbituric acid by integration of supramolecular receptors into ChemFETs. Sensing and Bio-Sensing Research, 2021, 31, 100397.	4.2	2
11	<i>N</i> -Methylation of Self-Immolative Thiocarbamates Provides Insights into the Mechanism of Carbonyl Sulfide Release. Journal of Organic Chemistry, 2021, 86, 5443-5451.	3.2	5
12	Comment on "Evidence that the ProPerDP method is inadequate for protein persulfidation detection due to lack of specificity― Science Advances, 2021, 7, .	10.3	3
13	Synthesis of Terminal Bis(hydrosulfido) and Disulfido Complexes of Ni(II) from a Geometrically Frustrated Tetrahedral Ni(II) Chloride Complex. Inorganic Chemistry, 2021, 60, 8135-8142.	4.0	2
14	Moving Past Quinone-Methides: Recent Advances toward Minimizing Electrophilic Byproducts from COS/H2S Donors. Current Topics in Medicinal Chemistry, 2021, 21, .	2.1	2
15	Nanohoop Rotaxane Design to Enhance the Selectivity of Reaction-Based Probes: A Proof-of-Principle Study. Organic Letters, 2021, 23, 4608-4612.	4.6	11
16	Subcellular Targeted Nanohoop for One- and Two-Photon Live Cell Imaging. ACS Nano, 2021, 15, 15285-15293.	14.6	25
17	NBD-based synthetic probes for sensing small molecules and proteins: design, sensing mechanisms and biological applications. Chemical Society Reviews, 2021, 50, 7436-7495.	38.1	94
18	Hydrolysis-Based Small-Molecule Hydrogen Selenide (H ₂ Se) Donors for Intracellular H ₂ Se Delivery, Journal of the American Chemical Society, 2021, 143, 19542-19550	13.7	18

#	Article	IF	CITATIONS
19	Activatable Small-Molecule Hydrogen Sulfide Donors. Antioxidants and Redox Signaling, 2020, 32, 96-109.	5.4	71
20	Extended hypoxiaâ€mediated H ₂ S production provides for longâ€term oxygen sensing. Acta Physiologica, 2020, 228, e13368.	3.8	14
21	Hydrosulfide Oxidation at a Molybdenum Tetrasulfido Complex. Inorganic Chemistry, 2020, 59, 15574-15578.	4.0	10
22	Modified cyclodextrins solubilize elemental sulfur in water and enable biological sulfane sulfur delivery. Chemical Science, 2020, 11, 11777-11784.	7.4	10
23	Progress toward colorimetric and fluorescent detection of carbonyl sulfide. Chemical Communications, 2020, 56, 9644-9647.	4.1	5
24	Frontispiece: Use of Dithiasuccinoyl aged Amines Enables COS/H ₂ S Release Lacking Electrophilic Byproducts. Chemistry - A European Journal, 2020, 26, .	3.3	1
25	Solvent-Dependent Linear Free-Energy Relationship in a Flexible Host–Guest System. Journal of Organic Chemistry, 2020, 85, 12367-12373.	3.2	17
26	Hydrosulfide complexes of the transition elements: diverse roles in bioinorganic, cluster, coordination, and organometallic chemistry. Chemical Society Reviews, 2020, 49, 4070-4134.	38.1	48
27	H2S donors with optical responses. Methods in Enzymology, 2020, 641, 149-164.	1.0	2
28	Highly efficient H ₂ S scavengers <i>via</i> thiolysis of positively-charged NBD amines. Chemical Science, 2020, 11, 7823-7828.	7.4	45
29	Effects of Manganese Porphyrins on Cellular Sulfur Metabolism. Molecules, 2020, 25, 980.	3.8	8
30	Use of Dithiasuccinoyl aged Amines Enables COS/H ₂ S Release Lacking Electrophilic Byproducts. Chemistry - A European Journal, 2020, 26, 5374-5380.	3.3	16
31	Tuning Supramolecular Selectivity for Hydrosulfide: Linear Free Energy Relationships Reveal Preferential C–H Hydrogen Bond Interactions. Journal of the American Chemical Society, 2020, 142, 8243-8251.	13.7	27
32	Speciation of reactive sulfur species and their reactions with alkylating agents: do we have any clue about what is present inside the cell?. British Journal of Pharmacology, 2019, 176, 646-670.	5.4	100
33	Development and Application of Carbonyl Sulfide-Based Donors for H ₂ S Delivery. Accounts of Chemical Research, 2019, 52, 2723-2731.	15.6	83
34	Cyclic Sulfenyl Thiocarbamates Release Carbonyl Sulfide and Hydrogen Sulfide Independently in Thiol-Promoted Pathways. Journal of the American Chemical Society, 2019, 141, 13610-13618.	13.7	36
35	Single-component, low molecular weight organic supergelators based on chiral barbiturate scaffolds. Supramolecular Chemistry, 2019, 31, 499-507.	1.2	0
36	Development of Acid-Mediated H ₂ S/COS Donors That Respond to a Specific pH Window. Journal of Organic Chemistry, 2019, 84, 14469-14475.	3.2	34

#	Article	IF	CITATIONS
37	Expanding reversible chalcogenide binding: supramolecular receptors for the hydroselenide (HSe ^{â^'}) anion. Chemical Science, 2019, 10, 67-72.	7.4	20
38	Fluorogenic hydrogen sulfide (H ₂ S) donors based on sulfenyl thiocarbonates enable H ₂ S tracking and quantification. Chemical Science, 2019, 10, 1873-1878.	7.4	65
39	Dual-biomarker-triggered fluorescence probes for differentiating cancer cells and revealing synergistic antioxidant effects under oxidative stress. Chemical Science, 2019, 10, 1945-1952.	7.4	64
40	Fluorescent Arylethynyl Hamilton Receptors for Barbiturate Sensing. Journal of Organic Chemistry, 2019, 84, 8571-8577.	3.2	3
41	Development of a hydrolysis-based small-molecule hydrogen selenide (H ₂ Se) donor. Chemical Science, 2019, 10, 10723-10727.	7.4	17
42	Effects of sulfane sulfur content in benzyl polysulfides on thiol-triggered H2S release and cell proliferation. Free Radical Biology and Medicine, 2019, 131, 393-398.	2.9	34
43	Esterase-Triggered Self-Immolative Thiocarbamates Provide Insights into COS Cytotoxicity. ACS Chemical Biology, 2019, 14, 170-175.	3.4	27
44	Dithioesters: simple, tunable, cysteine-selective H ₂ S donors. Chemical Science, 2019, 10, 1773-1779.	7.4	35
45	Reactive sulfur species (RSS): persulfides, polysulfides, potential, and problems. Current Opinion in Chemical Biology, 2019, 49, 1-8.	6.1	103
46	Cysteine-activated hydrogen sulfide (H ₂ S) delivery through caged carbonyl sulfide (COS) donor motifs. Chemical Communications, 2018, 54, 4951-4954.	4.1	66
47	Modular tripodal receptors for the hydrosulfide (HS ^{â^'}) anion. Chemical Communications, 2018, 54, 2337-2340.	4.1	22
48	S Marks the Spot: Linking the Antioxidant Activity of N-Acetyl Cysteine to H2S and Sulfane Sulfur Species. Cell Chemical Biology, 2018, 25, 353-355.	5.2	11
49	Emerging Roles of Carbonyl Sulfide in Chemical Biology: Sulfide Transporter or Gasotransmitter?. Antioxidants and Redox Signaling, 2018, 28, 1516-1532.	5.4	56
50	Investigations into the carbonic anhydrase inhibition of COS-releasing donor core motifs. Biochemical Pharmacology, 2018, 149, 124-130.	4.4	2
51	Thionoesters: A Native Chemical Ligation-Inspired Approach to Cysteine-Triggered H ₂ S Donors. Journal of the American Chemical Society, 2018, 140, 12574-12579.	13.7	54
52	Expanding the Chemical Space of Biocompatible Fluorophores: Nanohoops in Cells. ACS Central Science, 2018, 4, 1173-1178.	11.3	75
53	Cytochrome <i>c</i> Reduction by H ₂ S Potentiates Sulfide Signaling. ACS Chemical Biology, 2018, 13, 2300-2307.	3.4	76
54	Colorimetric Carbonyl Sulfide (COS)/Hydrogen Sulfide (H ₂ S) Donation from γâ€Ketothiocarbamate Donor Motifs. Angewandte Chemie - International Edition, 2018, 57, 13101-13105.	13.8	36

#	Article	IF	CITATIONS
55	Colorimetric Carbonyl Sulfide (COS)/Hydrogen Sulfide (H 2 S) Donation from γâ€Ketothiocarbamate Donor Motifs. Angewandte Chemie, 2018, 130, 13285-13289.	2.0	4
56	Light-Activated COS/H ₂ S Donation from Photocaged Thiocarbamates. Organic Letters, 2017, 19, 2278-2281.	4.6	83
57	Spectroscopic investigation of the reaction of metallo-protoporphyrins with hydrogen sulfide. Journal of Inorganic Biochemistry, 2017, 173, 152-157.	3.5	23
58	Applications of Synthetic Organic Tetrasulfides as H ₂ S Donors. Organic Letters, 2017, 19, 2314-2317.	4.6	68
59	Inhibition of Mitochondrial Bioenergetics by Esterase-Triggered COS/H ₂ S Donors. ACS Chemical Biology, 2017, 12, 2117-2123.	3.4	68
60	Bio-orthogonal "click-and-release―donation of caged carbonyl sulfide (COS) and hydrogen sulfide (H ₂ S). Chemical Communications, 2017, 53, 1378-1380.	4.1	79
61	Supramolecular bidentate phosphine ligand scaffolds from deconstructed Hamilton receptors. Chemical Communications, 2017, 53, 561-564.	4.1	8
62	Kinetic Insights into Hydrogen Sulfide Delivery from Caged-Carbonyl Sulfide Isomeric Donor Platforms. Journal of the American Chemical Society, 2017, 139, 16365-16376.	13.7	87
63	Bis(aryl) Tetrasulfides as Cathode Materials for Rechargeable Lithium Batteries. Chemistry - A European Journal, 2017, 23, 16941-16947.	3.3	56
64	Different and Often Opposing Forces Drive the Encapsulation and Multiple Exterior Binding of Charged Guests to a M ₄ L ₆ Supramolecular Vessel in Water. Chemistry - A European Journal, 2017, 23, 16813-16818.	3.3	18
65	Frontispiece: Bis(aryl) Tetrasulfides as Cathode Materials for Rechargeable Lithium Batteries. Chemistry - A European Journal, 2017, 23, .	3.3	0
66	Gasotransmitters in Biology and Medicine: Molecular Mechanisms and Drug Targets. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-2.	4.0	18
67	The Intersection of NO and H ₂ S: Persulfides Generate NO from Nitrite through Polysulfide Formation. Inorganic Chemistry, 2016, 55, 12618-12625.	4.0	43
68	Self-Immolative Thiocarbamates Provide Access to Triggered H ₂ S Donors and Analyte Replacement Fluorescent Probes. Journal of the American Chemical Society, 2016, 138, 7256-7259.	13.7	156
69	Stabilization of a Zn(<scp>ii</scp>) hydrosulfido complex utilizing a hydrogen-bond accepting ligand. Chemical Communications, 2016, 52, 7680-7682.	4.1	23
70	Organelle-Targeted H ₂ S Probes Enable Visualization of the Subcellular Distribution of H ₂ S Donors. Analytical Chemistry, 2016, 88, 5769-5774.	6.5	58
71	A practical guide to working with H ₂ S at the interface of chemistry and biology. Chemical Society Reviews, 2016, 45, 6108-6117.	38.1	278
72	A Synthetic Supramolecular Receptor for the Hydrosulfide Anion. Angewandte Chemie - International Edition, 2016, 55, 11480-11484.	13.8	40

#	Article	IF	CITATIONS
73	A Synthetic Supramolecular Receptor for the Hydrosulfide Anion. Angewandte Chemie, 2016, 128, 11652-11656.	2.0	9
74	Hydrogen Sulfide Donors Activated by Reactive Oxygen Species. Angewandte Chemie, 2016, 128, 14858-14862.	2.0	29
75	Hydrogen Sulfide Donors Activated by Reactive Oxygen Species. Angewandte Chemie - International Edition, 2016, 55, 14638-14642.	13.8	127
76	Spectroscopic investigations into the binding of hydrogen sulfide to synthetic picket-fence porphyrins. Dalton Transactions, 2016, 45, 4843-4853.	3.3	33
77	Synthesis of Amino-ADT Provides Access to Hydrolytically Stable Amide-Coupled Hydrogen Sulfide Releasing Drug Targets. Synlett, 2016, 27, 1349-1353.	1.8	15
78	A Bright Fluorescent Probe for H ₂ S Enables Analyte-Responsive, 3D Imaging in Live Zebrafish Using Light Sheet Fluorescence Microscopy. Journal of the American Chemical Society, 2015, 137, 10216-10223.	13.7	194
79	Natural Products Containing Hydrogen Sulfide Releasing Moieties. Synlett, 2015, 26, 2633-2643.	1.8	59
80	Collaboration and Near-Peer Mentoring as a Platform for Sustainable Science Education Outreach. Journal of Chemical Education, 2015, 92, 625-630.	2.3	35
81	Design, Synthesis, and Characterization of Hybrid Metal–Ligand Hydrogen-Bonded (MLHB) Supramolecular Architectures. Inorganic Chemistry, 2015, 54, 1912-1918.	4.0	18
82	Inhibition of endogenous hydrogen sulfide production in clear-cell renal cell carcinoma cell lines and xenografts restricts their growth, survival and angiogenic potential. Nitric Oxide - Biology and Chemistry, 2015, 49, 26-39.	2.7	27
83	Selection for a Single Self-Assembled Macrocycle from a Hybrid Metal–Ligand Hydrogen-Bonded (MLHB) Ligand Subunit. Inorganic Chemistry, 2015, 54, 6910-6916.	4.0	5
84	Chemiluminescent Detection of Enzymatically Produced H2S. Methods in Enzymology, 2015, 554, 81-99.	1.0	5
85	NBu ₄ SH provides a convenient source of HS ^{â^'} soluble in organic solution for H ₂ S and anion-binding research. Dalton Transactions, 2015, 44, 19782-19785.	3.3	30
86	Mechanistic Insights into the H ₂ S-Mediated Reduction of Aryl Azides Commonly Used in H ₂ S Detection. Journal of the American Chemical Society, 2015, 137, 15330-15336.	13.7	185
87	Reactions of isolated persulfides provide insights into the interplay between H2S and persulfide reactivity. Free Radical Biology and Medicine, 2015, 89, 662-667.	2.9	50
88	A simple bioluminescent method for measuring d-amino acid oxidase activity. Chemical Communications, 2015, 51, 5425-5428.	4.1	17
89	Mechanistic investigations reveal that dibromobimane extrudes sulfur from biological sulfhydryl sources other than hydrogen sulfide. Chemical Science, 2015, 6, 294-300.	7.4	28
90	Understanding the Effects of Preorganization, Rigidity, and Steric Interactions in Synthetic Barbiturate Receptors. Journal of Organic Chemistry, 2014, 79, 711-719.	3.2	19

#	Article	IF	CITATIONS
91	Linear Free Energy Relationships Reveal Structural Changes in Hydrogen-Bonded Host–Guest Interactions. Journal of Organic Chemistry, 2014, 79, 11797-11801.	3.2	11
92	Chloride-catalyzed, multicomponent self-assembly of arsenic thiolates. Chemical Communications, 2014, 50, 73-75.	4.1	11
93	Hydrogen Sulfide Deactivates Common Nitrobenzofurazan-Based Fluorescent Thiol Labeling Reagents. Analytical Chemistry, 2014, 86, 6032-6039.	6.5	72
94	Understanding Hydrogen Sulfide Storage: Probing Conditions for Sulfide Release from Hydrodisulfides. Journal of the American Chemical Society, 2014, 136, 10573-10576.	13.7	124
95	Chemically Reversible Reactions of Hydrogen Sulfide with Metal Phthalocyanines. Inorganic Chemistry, 2014, 53, 7800-7802.	4.0	53
96	Ratiometric Measurement of Hydrogen Sulfide and Cysteine/Homocysteine Ratios Using a Dual-Fluorophore Fragmentation Strategy. Analytical Chemistry, 2014, 86, 7135-7140.	6.5	125
97	Chemiluminescent Detection of Enzymatically Produced Hydrogen Sulfide: Substrate Hydrogen Bonding Influences Selectivity for H ₂ S over Biological Thiols. Journal of the American Chemical Society, 2013, 135, 16697-16704.	13.7	161
98	Identification and Rescue of α-Synuclein Toxicity in Parkinson Patient–Derived Neurons. Science, 2013, 342, 983-987.	12.6	416
99	Development of Selective Colorimetric Probes for Hydrogen Sulfide Based on Nucleophilic Aromatic Substitution. Journal of Organic Chemistry, 2013, 78, 6550-6557.	3.2	160
100	Chemical Tools for Studying Biological Hydrogen Sulfide. ACS Symposium Series, 2013, , 15-32.	0.5	10
101	Specific Visualization of Nitric Oxide in the Vasculature with Two-Photon Microscopy Using a Copper Based Fluorescent Probe. PLoS ONE, 2013, 8, e75331.	2.5	15
102	Reversible binding of nitric oxide to an Fe(iii) complex of a tetra-amido macrocycle. Chemical Communications, 2012, 48, 11981.	4.1	14
103	Selective turn-on fluorescent probes for imaging hydrogen sulfide in living cells. Chemical Communications, 2012, 48, 4767.	4.1	398
104	Role of Ca2+ in the Control of H2O2-Modulated Phosphorylation Pathways Leading to eNOS Activation in Cardiac Myocytes. PLoS ONE, 2012, 7, e44627.	2.5	17
105	Seminaphthofluorescein-Based Fluorescent Probes for Imaging Nitric Oxide in Live Cells. Inorganic Chemistry, 2011, 50, 9385-9392.	4.0	72
106	Biochemistry of Mobile Zinc and Nitric Oxide Revealed by Fluorescent Sensors. Annual Review of Biochemistry, 2011, 80, 333-355.	11.1	156
107	Hydrogen peroxide differentially modulates cardiac myocyte nitric oxide synthesis. Proceedings of the United States of America, 2011, 108, 15792-15797.	7.1	76
108	Enzymelike Catalysis of the Nazarov Cyclization by Supramolecular Encapsulation. Journal of the American Chemical Society, 2010, 132, 6938-6940.	13.7	308

#	Article	IF	CITATIONS
109	External and Internal Guest Binding of a Highly Charged Supramolecular Host in Water: Deconvoluting the Very Different Thermodynamics. Journal of the American Chemical Society, 2010, 132, 1005-1009.	13.7	87
110	Mechanism of Nitric Oxide Reactivity and Fluorescence Enhancement of the NO-Specific Probe CuFL1. Inorganic Chemistry, 2010, 49, 8025-8033.	4.0	45
111	Cell-Trappable Fluorescent Probes for Nitric Oxide Visualization in Living Cells. Organic Letters, 2010, 12, 2318-2321.	4.6	62
112	Encapsulation and characterization of proton-bound amine homodimers in a water-soluble, self-assembled supramolecular host. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10438-10443.	7.1	56
113	Proton-Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host. Accounts of Chemical Research, 2009, 42, 1650-1659.	15.6	555
114	Structural Consequences of Anionic Hostâ^'Cationic Guest Interactions in a Supramolecular Assembly. Inorganic Chemistry, 2009, 48, 111-120.	4.0	65
115	The Acid Hydrolysis Mechanism of Acetals Catalyzed by a Supramolecular Assembly in Basic Solution. Journal of Organic Chemistry, 2009, 74, 58-63.	3.2	61
116	Simultaneously bound guests and chiral recognition: a chiral self-assembled supramolecular host encapsulates hydrophobic guests. Tetrahedron, 2008, 64, 8362-8367.	1.9	42
117	Supramolecular Catalysis of Orthoformate Hydrolysis in Basic Solution: An Enzyme-Like Mechanism. Journal of the American Chemical Society, 2008, 130, 11423-11429.	13.7	93
118	Diffusion of a Highly Charged Supramolecular Assembly: Direct Observation of Ion Association in Water1. Inorganic Chemistry, 2008, 47, 1411-1413.	4.0	31
119	Acceleration of Amide Bond Rotation by Encapsulation in the Hydrophobic Interior of a Water-Soluble Supramolecular Assembly. Journal of Organic Chemistry, 2008, 73, 7132-7136.	3.2	25
120	Encapsulation of Protonated Diamines in a Water-Soluble, Chiral, Supramolecular Assembly Allows for Measurement of Hydrogen-Bond Breaking Followed by Nitrogen Inversion/Rotation. Journal of the American Chemical Society, 2008, 130, 6362-6366.	13.7	51
121	Reversible guest exchange mechanisms in supramolecular host–guest assemblies. Chemical Society Reviews, 2007, 36, 161-171.	38.1	448
122	Acid Catalysis in Basic Solution: A Supramolecular Host Promotes Orthoformate Hydrolysis. Science, 2007, 316, 85-88.	12.6	717
123	Making Amines Strong Bases:  Thermodynamic Stabilization of Protonated Guests in a Highly-Charged Supramolecular Host ¹ . Journal of the American Chemical Society, 2007, 129, 11459-11467.	13.7	117
124	Analysis of an Unprecedented Mechanism for the Catalytic Hydrosilylation of Carbonyl Compounds. Journal of the American Chemical Society, 2007, 129, 14684-14696.	13.7	142
125	Catalytic Deprotection of Acetals in Basic Solution with a Selfâ€Assembled Supramolecular "Nanozyme― Angewandte Chemie - International Edition, 2007, 46, 8587-8589.	13.8	117
126	N,N′-(Pyrene-1,8-diyl)bis(2,3-dimethoxybenzaldehyde). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3621-o3621.	0.2	0

#	Article	IF	CITATIONS
127	1,2-HOIQOa Highly Versatile 1,2-HOPO Analogue. Inorganic Chemistry, 2007, 46, 351-353.	4.0	33
128	Dimethoxyphosphinoyl phenyl ketonep-tolylsulfonylhydrazone. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o3551-o3552.	0.2	0
129	Organometallic chemistry in aqueous solution: Reactions catalyzed by water-soluble molybdocenes. Coordination Chemistry Reviews, 2006, 250, 1141-1151.	18.8	62
130	Aqueous Phase Organometallic Catalysis Using (MeCp)2Mo(OH)(H2O)+. Intramolecular Attack of Hydroxide on Organic Substrates. Organometallics, 2004, 23, 1738-1746.	2.3	48
131	Organometallic Chemistry in Aqueous Solution. Hydration of Nitriles to Amides Catalyzed by a Water-Soluble Molybdocene, (MeCp)2Mo(OH)(H2O)+. Organometallics, 2003, 22, 1203-1211.	2.3	128
132	Selective Stoichiometric and Catalytic Reactivity in the Confines of a Chiral Supramolecular Assembly. , 0, , 165-197.		7