
Daniel Marc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8906318/publications.pdf Version: 2024-02-01

DANIEL MARC

#	Article	IF	CITATIONS
1	Influenza A Virus NS1 Protein Structural Flexibility Analysis According to Its Structural Polymorphism Using Computational Approaches. International Journal of Molecular Sciences, 2022, 23, 1805.	1.8	2
2	Study of the host specificity of PB1-F2-associated virulence. Virulence, 2021, 12, 1647-1660.	1.8	4
3	Structure and Sequence Determinants Governing the Interactions of RNAs with Influenza A Virus Non-Structural Protein NS1. Viruses, 2020, 12, 947.	1.5	3
4	Molecular Dynamics Simulations of Influenza A Virus NS1 Reveal a Remarkably Stable RNA-Binding Domain Harboring Promising Druggable Pockets. Viruses, 2020, 12, 537.	1.5	5
5	Curcumin inhibits the TGF-β1-dependent differentiation of lung fibroblasts via PPARγ-driven upregulation of cathepsins B and L. Scientific Reports, 2019, 9, 491.	1.6	35
6	Chicken endothelial cells are highly responsive to viral innate immune stimuli and are susceptible to infections with various avian pathogens. Avian Pathology, 2019, 48, 121-134.	0.8	6
7	Major contribution of the RNA-binding domain of NS1 in the pathogenicity and replication potential of an avian H7N1 influenza virus in chickens. Virology Journal, 2018, 15, 55.	1.4	11
8	Productive replication of avian influenza viruses in chicken endothelial cells is determined by hemagglutinin cleavability and is related to innate immune escape. Virology, 2018, 513, 29-42.	1.1	13
9	Factors associated with influenza vaccination failure and severe disease in a French region in 2015. PLoS ONE, 2018, 13, e0195611.	1.1	3
10	Stop-codon variations in non-structural protein NS1 of avian influenza viruses. Virulence, 2016, 7, 498-501.	1.8	5
11	Protection Patterns in Duck and Chicken after Homo- or Hetero-Subtypic Reinfections with H5 and H7 Low Pathogenicity Avian Influenza Viruses: A Comparative Study. PLoS ONE, 2014, 9, e105189.	1.1	14
12	Shortening the unstructured, interdomain region of the non-structural protein NS1 of an avian H1N1 influenza virus increases its replication and pathogenicity in chickens. Journal of General Virology, 2014, 95, 1233-1243.	1.3	13
13	Influenza virus non-structural protein NS1: interferon antagonism and beyond. Journal of General Virology, 2014, 95, 2594-2611.	1.3	117
14	Innate immune response to a H3N2 subtype swine influenza virus in newborn porcine trachea cells, alveolar macrophages, and precision-cut lung slices. Veterinary Research, 2014, 45, 42.	1.1	50
15	Deletion of the C-terminal ESEV domain of NS1 does not affect the replication of a low-pathogenic avian influenza virus H7N1 in ducks and chickens. Journal of General Virology, 2013, 94, 50-58.	1.3	27
16	SOCS proteins in infectious diseases of mammals. Veterinary Immunology and Immunopathology, 2013, 151, 1-19.	0.5	46
17	The RNA-binding domain of influenzavirus non-structural protein-1 cooperatively binds to virus-specific RNA sequences in a structure-dependent manner. Nucleic Acids Research, 2013, 41, 434-449.	6.5	28
18	Length Variations in the NA Stalk of an H7N1 Influenza Virus Have Opposite Effects on Viral Excretion in Chickens and Ducks. Journal of Virology, 2012, 86, 584-588.	1.5	49

DANIEL MARC

#	Article	IF	CITATIONS
19	NS1Âdes virus influenzaÂ: une protéine très «Âinfluente». Virologie, 2012, 16, 95-106.	0.1	5
20	A novel chicken lung epithelial cell line: Characterization and response to low pathogenicity avian influenza virus. Virus Research, 2011, 159, 32-42.	1.1	51
21	Analysis of nucleic acid chaperoning by the prion protein and its inhibition by oligonucleotides. Nucleic Acids Research, 2011, 39, 8544-8558.	6.5	11
22	Aptamers to explore prion protein interactions with nucleic acids. Frontiers in Bioscience - Landmark, 2010, 15, 550.	3.0	3
23	A Genetically Engineered Waterfowl Influenza Virus with a Deletion in the Stalk of the Neuraminidase Has Increased Virulence for Chickens. Journal of Virology, 2010, 84, 940-952.	1.5	124
24	Functional Homologies between Avian and Human Alphaherpesvirus VP22 Proteins in Cell-to-Cell Spreading as Revealed by a New <i>cis</i> -Complementation Assay. Journal of Virology, 2008, 82, 9278-9282.	1.5	11
25	Scavenger, transducer, RNA chaperone? What ligands of the prion protein teach us about its function. Cellular and Molecular Life Sciences, 2007, 64, 815-829.	2.4	19
26	Fast, reversible interaction of prion protein with RNA aptamers containing specific sequence patterns. Archives of Virology, 2006, 151, 2197-2214.	0.9	34
27	Phenotyping of Protein-Prion (PrPsc)-accumulating Cells in Lymphoid and Neural Tissues of Naturally Scrapie-affected Sheep by Double-labeling Immunohistochemistry. Journal of Histochemistry and Cytochemistry, 2002, 50, 1357-1370.	1.3	66
28	Unusual Property of Prion Protein Unfolding in Neutral Salt Solution. Biochemistry, 2002, 41, 11017-11024.	1.2	21
29	PrPC has nucleic acid chaperoning properties similar to the nucleocapsid protein of HIV-1. Comptes Rendus - Biologies, 2002, 325, 17-23.	0.1	29
30	The Prion Protein Has RNA Binding and Chaperoning Properties Characteristic of Nucleocapsid Protein NCp7 of HIV-1. Journal of Biological Chemistry, 2001, 276, 19301-19309.	1.6	163
31	High yield purification and physico-chemical properties of full-length recombinant allelic variants of sheep prion protein linked to scrapie susceptibility. FEBS Journal, 2000, 267, 2833-2839.	0.2	145
32	Increased Tracheal Colonization in Chickens without Impairing Pathogenic Properties of Avian Pathogenic Escherichia coli MT78 with a fimH Deletion. Avian Diseases, 2000, 44, 343.	0.4	32
33	Early accumulation of PrPSc in gut-associated lymphoid and nervous tissues of susceptible sheep from a Romanov flock with natural scrapie. Journal of General Virology, 2000, 81, 3115-3126.	1.3	372
34	Colonization ability and pathogenic properties of a fimâ^' mutant of an avian strain of Escherichia coli. Research in Microbiology, 1998, 149, 473-485.	1.0	39
35	Analysis of the fim cluster of an avian O2 strain of Escherichia coli: serogroup-specific sites within fimA and nucleotide sequence of fimI. Journal of Medical Microbiology, 1996, 44, 444-452.	0.7	43
36	Analysis of putative active site residues of the poliovirus 3C protease. Virology, 1991, 181, 609-619.	1.1	59

#	Article	IF	CITATIONS
37	A Gly1 to Ala substitution in poliovirus capsid protein VP0 blocks its myristoylation and prevents viral assembly. Journal of General Virology, 1991, 72, 1151-1157.	1.3	36
38	Lack of myristoylation of poliovirus capsid polypeptide VPO prevents the formation of virions or results in the assembly of noninfectious virus particles. Journal of Virology, 1990, 64, 4099-4107.	1.5	87
39	Role of myristoylation of poliovirus capsid protein VP4 as determined by site-directed mutagenesis of its N-terminal sequence EMBO Journal, 1989, 8, 2661-2668.	3.5	96