
Di Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8905660/publications.pdf

Version: 2024-02-01

Dilui

#	Article	IF	CITATIONS
1	Electron-withdrawing bulky group substituted carbazoles for blue TADF emitters: Simultaneous improvement of blue color purity and RISC rate constants. Dyes and Pigments, 2022, 203, 110329.	3.7	14
2	tert-Butyltriazine-Diphenylaminocarbazole based TADF materials: ï€-Bridge modification for enhanced kRISC and efficiency stability. Dyes and Pigments, 2022, 204, 110430.	3.7	3
3	Low-driving-voltage sky-blue phosphorescent organic light-emitting diodes with bicarbazole-bipyridine bipolar host materials. Materials Chemistry Frontiers, 2021, 5, 2867-2876.	5.9	8
4	Developing deep blue (CIE _{<i>y</i>} < 0.08) and pure blue (CIE _{<i>y</i>} < 0.11) OLEDs <i>via</i> molecular engineering of carbazole moiety. New Journal of Chemistry, 2021, 45, 16732-16739.	2.8	6
5	Highly Efficient Simple-Structure Sky-Blue Organic Light-Emitting Diode Using a Bicarbazole/Cyanopyridine Bipolar Host. ACS Applied Materials & Interfaces, 2021, 13, 13459-13469.	8.0	36
6	Rational Utilization of Intramolecular Hydrogen Bonds to Achieve Blue TADF with EQEs of Nearly 30% and Single Emissive Layer All-TADF WOLED. ACS Applied Materials & Interfaces, 2021, 13, 44615-44627.	8.0	27
7	A versatile carbazole donor design strategy for blue emission switching from normal fluorescence to thermally activated delayed fluorescence. Dyes and Pigments, 2021, 194, 109581.	3.7	18
8	Low efficiency roll-off thermally activated delayed fluorescence emitters for non-doped OLEDs: Substitution effect of thioether and sulfone groups. Dyes and Pigments, 2021, 194, 109649.	3.7	8
9	Acridin-9(10 <i>H</i>)-one based thermally activated delayed fluorescence material: simultaneous optimization of RISC and radiation processes to boost luminescence efficiency. Journal of Materials Chemistry C, 2021, 9, 5885-5892.	5.5	27
10	Pure red phosphorescent iridium(iii) complexes containing phenylquinazoline ligands for highly efficient organic light-emitting diodes. New Journal of Chemistry, 2021, 45, 11253-11260.	2.8	6
11	Selfâ€Host Thermally Activated Delayed Fluorescence Material with Aggregationâ€Induced Emission Character: Multiâ€Functional Applications in OLEDs. Advanced Optical Materials, 2021, 9, 2100970.	7.3	7
12	Acceptor modulation for blue and yellow TADF materials and fabrication of all-TADF white OLED. Materials Chemistry Frontiers, 2021, 6, 40-51.	5.9	6
13	Mechanism evolution from normal fluorescence to thermally activated delayed fluorescence and color tuning over visible light range: Effect of intramolecular charge transfer strength. Dyes and Pigments, 2020, 183, 108732.	3.7	14
14	A donor design strategy for triazine-carbazole blue thermally activated delayed fluorescence materials. New Journal of Chemistry, 2020, 44, 9743-9753.	2.8	15
15	Effects of Electron Affinity and Steric Hindrance of the Trifluoromethyl Group on the Ï€â€Bridge in Designing Blue Thermally Activated Delayed Fluorescence Emitters. Chemistry - A European Journal, 2020, 26, 6899-6909.	3.3	19
16	Sky-blue iridium complexes with pyrimidine ligands for highly efficient phosphorescent organic light-emitting diodes. New Journal of Chemistry, 2020, 44, 8743-8750.	2.8	12
17	Saturated red phosphorescent Iridium(III) complexes containing phenylquinoline ligands for efficient organic light-emitting diodes. Dyes and Pigments, 2020, 179, 108405.	3.7	19
18	Novel yellow thermally activated delayed fluorescence emitters for highly efficient full-TADF WOLEDs with low driving voltages and remarkable color stability. New Journal of Chemistry, 2019, 43, 13339-13348.	2.8	13

Dı Lıu

#	Article	IF	CITATIONS
19	Versatile Host Materials for Highlyâ€Efficient Green, Red Phosphorescent and White Organic Lightâ€Emitting Diodes. ChemElectroChem, 2019, 6, 5810-5818.	3.4	15
20	Substitution Effect on Luminescence of 5 <i>H</i> â€Indeno[1,2â€ <i>b</i>]pyridinâ€5â€one Based Isomers. ChemistrySelect, 2019, 4, 9754-9761.	1.5	2
21	Multifunctional applications of triazine/carbazole hybrid thermally activated delayed fluorescence emitters in organic light emitting diodes. Journal of Materials Chemistry C, 2019, 7, 12470-12481.	5.5	30
22	Quinoxaline and Pyrido[<i>x</i> , <i>y</i> â€ <i>b</i>]pyrazineâ€Based Emitters: Tuning Normal Fluorescence to Thermally Activated Delayed Fluorescence and Emitting Color over the Entire Visibleâ€Light Range. Chemistry - A European Journal, 2019, 25, 10926-10937.	3.3	30
23	Towards better UV-blocking and antioxidant performance of varnish via additives based on lignin and its colloids. Holzforschung, 2019, 73, 485-491.	1.9	22
24	Molecular evolution of host materials by regular tuning of n/p ratio for high-performance phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 7839-7846.	5.5	13
25	Cyanopyridine based bipolar host materials for phosphorescent light-emitting diodes with low efficiency roll-off: Importance of charge balance. Dyes and Pigments, 2018, 159, 230-237.	3.7	12
26	Molecular Engineering of Host Materials for Highâ€Performance Phosphorescent OLEDs: Zigâ€Zag Conformation with 3D Gridding Packing Mode Facilitating Charge Balance and Quench Suppression. Advanced Functional Materials, 2018, 28, 1803193.	14.9	28
27	New tetrafluorophenylene/carbazole hybrid host materials for phosphorescence organic light-emitting diodes. New Journal of Chemistry, 2018, 42, 15397-15404.	2.8	2
28	High-triplet-energy host materials containing saturated carbon atom for blue and green phosphorescent OLEDs. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 152-157.	3.9	6
29	Modulation of n-Type Units in Bipolar Host Materials toward High-Performance Phosphorescent OLEDs. ACS Applied Materials & Interfaces, 2017, 9, 37888-37897.	8.0	32
30	Synergistic Antioxidant Performance of Lignin and Quercetin Mixtures. ACS Sustainable Chemistry and Engineering, 2017, 5, 8424-8428.	6.7	59
31	Dual n-type units including pyridine and diphenylphosphine oxide: effective design strategy of host materials for high-performance organic light-emitting diodes. Chemical Science, 2016, 7, 6706-6714.	7.4	50
32	1,2,4-Triazole-containing bipolar hosts for blue and green phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 7260-7268.	5.5	27
33	Novel Ir(ppy) ₃ Derivatives: Simple Structure Modification Toward Nearly 30% External Quantum Efficiency in Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2016, 4, 864-870.	7.3	25
34	Synthesis and electrophosphorescence of novel heteroleptic iridium complexes based on thiazole-containing ligands. RSC Advances, 2016, 6, 34198-34203.	3.6	6
35	Cyanopyridine Based Bipolar Host Materials for Green Electrophosphorescence with Extremely Low Turn-On Voltages and High Power Efficiencies. ACS Applied Materials & Interfaces, 2016, 8, 21497-21504.	8.0	49
36	Simple Bipolar Host Materials for High-Efficiency Blue, Green, and White Phosphorescence OLEDs. ACS Applied Materials & Interfaces, 2016, 8, 22382-22391.	8.0	69

Dı Lıu

#	Article	IF	CITATIONS
37	Comprehensive Studies on Excited-State Proton Transfer of a Series of 2-(2′-Hydroxyphenyl)benzothiazole Derivatives: Synthesis, Optical Properties, and Theoretical Calculations. Journal of Physical Chemistry C, 2015, 119, 4242-4251.	3.1	99
38	Bipolar host materials for high-efficiency blue phosphorescent and delayed-fluorescence OLEDs. Journal of Materials Chemistry C, 2015, 3, 12529-12538.	5.5	66
39	The excited-state proton transfer mechanism in water-bridged 4-hydroxybenzoate: spectroscopy and DFT/TDDFT studies. RSC Advances, 2014, 4, 27078.	3.6	4
40	Synthesis and Electrophosphorescence of Iridium Complexes Containing Benzothiazole-Based Ligands. ACS Applied Materials & Interfaces, 2013, 5, 4937-4944.	8.0	67
41	Solution-processable iridium complexes for efficient orange-red and white organic light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 1411-1417.	6.7	69
42	Homoleptic tris-cyclometalated iridium complexes with 2-phenylbenzothiazole ligands for highly efficient orange OLEDs. Journal of Materials Chemistry, 2011, 21, 15494.	6.7	67
43	Dicyanopyrazine-Containing Fused Aromatic Molecules: Potential n-Type Materials for Use in Optoelectronic Devices. Synthetic Communications, 2011, 41, 3325-3333.	2.1	13
44	Highly Efficient Orange and White Organic Lightâ€Emitting Diodes Based on New Orange Iridium Complexes. Advanced Materials, 2011, 23, 2823-2827.	21.0	200
45	Synthesis and Characterization of New Thienopyrazineâ€cored Dendrimer for Nonâ€Doped Organic Red Lightâ€Emitting Diodes. Chinese Journal of Chemistry, 2011, 29, 2655-2658.	4.9	3
46	Deep-blue and white organic light-emitting diodes based on novel fluorene-cored derivatives with naphthylanthracene endcaps. Journal of Materials Chemistry, 2011, 21, 12969.	6.7	58
47	Organic photovoltaic materials and thin-film solar cells. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2010, 5, 45-60.	0.4	5
48	Synthesis and Characterization of Novel Perylenediimide-Cored Dendrimer with Fluorinated Shell. Synthetic Communications, 2010, 40, 759-765.	2.1	3
49	Novel perylene bisimide derivative with fluorinated shell: A multifunctional material for use in optoelectronic devices. Chemical Physics Letters, 2009, 482, 72-76.	2.6	26
50	Dendrimers for organic light-emitting diodes. Journal of Materials Chemistry, 2009, 19, 7584.	6.7	86
51	A High Tg Carbazole-Based Hole-Transporting Material for Organic Light-Emitting Devices. Chemistry of Materials, 2005, 17, 1208-1212.	6.7	204
52	A New Family of Isophorone-Based Dopants for Red Organic Electroluminescent Devices. Chemistry of Materials, 2003, 15, 1486-1490.	6.7	88
53	Bicarbazole-Cyanopyridine Based Bipolar Host Materials for Green and Blue Phosphorescence OLEDs: Influence of Linking Style between P- and N-Type Units. New Journal of Chemistry, 0, , .	2.8	1