Parviz Asadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8905487/publications.pdf

Version: 2024-02-01

201385 243296 2,323 50 27 44 h-index citations g-index papers 50 50 50 1180 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effects of different cooling conditions on friction stir processing of A356 alloy: Numerical modeling and experiment. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236, 4133-4146.	1.1	19
2	Modeling of pin shape effects in bobbin tool FSW. International Journal of Lightweight Materials and Manufacture, 2022, 5, 162-177.	1.3	10
3	Investigation of the effect of tool probe profile on reinforced particles distribution using experimental and CEL approaches. International Journal of Lightweight Materials and Manufacture, 2022, 5, 213-223.	1.3	5
4	Multivariate optimization of mechanical and microstructural properties of welded joints by FSW method. Engineering Failure Analysis, 2022, 140, 106528.	1.8	24
5	Modeling of material flow in dissimilar friction stir lap welding of aluminum and brass using coupled Eulerian and Lagrangian method. International Journal of Advanced Manufacturing Technology, 2021, 113, 721-734.	1.5	38
6	Formability study and metallurgical properties analysis of FSWed AA 6061 blank by the SPIF process. SN Applied Sciences, $2021, 3, 1$.	1.5	12
7	Numerical modeling and experimental investigation of brass wire forming by friction stir back extrusion. International Journal of Advanced Manufacturing Technology, 2021, 116, 3231-3245.	1.5	24
8	Optimization of microstructural and mechanical properties of brass wire produced by friction stir extrusion using Taguchi method. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 235, 2709-2719.	0.7	8
9	Simulation and experimental investigation of multi-walled carbon nanotubes/aluminum composite fabrication using friction stir processing. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2021, 235, 2165-2179.	1.4	35
10	Numerical investigation on the effect of welding speed and heat input on the residual stress of multi-pass TIG welded stainless steel pipe. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2021, 235, 1007-1021.	1.5	9
11	Dissimilar friction stir lap welding of aluminum to brass: Modeling of material mixing using coupled Eulerian–Lagrangian method with experimental verifications. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020, 234, 1117-1128.	0.7	13
12	Effects of material type, preheating and weld pass number on residual stress of welded steel pipes by multi-pass TIG welding (C-Mn, SUS304, SUS316). Thermal Science and Engineering Progress, 2020, 16, 100462.	1.3	19
13	Effect of Tool Pin Profile on Material Flow in Double Shoulder Friction Stir Welding of AZ91 Magnesium Alloy. International Journal of Mechanical Sciences, 2020, 183, 105775.	3.6	40
14	Formation of thermo-mechanically affected zone in friction stir welding. Materials Research Express, 2019, 6, 086558.	0.8	31
15	Formability analysis of dissimilar friction stir welded AA 6061 and AA 5083 blanks by SPIF process. CIRP Journal of Manufacturing Science and Technology, 2019, 25, 50-68.	2.3	41
16	Optimization of microstructural and mechanical properties of friction stir welded A356 pipes using Taguchi method. Materials Research Express, 2019, 6, 066545.	0.8	29
17	Wear and mechanical properties of surface hybrid metal matrix composites on Al–Si aluminum alloys fabricated by friction stir processing. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233, 790-799.	0.7	18
18	Effect of tool pin profile on distribution of reinforcement particles during friction stir processing of B ₄ C/aluminum composites. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2018, 232, 637-651.	0.7	28

#	Article	IF	Citations
19	Multicriteria optimization of mechanical properties of aluminum composites reinforced with different reinforcing particles type. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2018, 232, 323-337.	1.4	36
20	The effect of reinforcement type on the microstructure, mechanical properties, and wear resistance of A356 matrix composites produced by FSP. International Journal of Advanced Manufacturing Technology, 2017, 91, 1391-1407.	1.5	46
21	Wear Performance of A356 Matrix Composites Reinforced with Different Types of Reinforcing Particles. Journal of Materials Engineering and Performance, 2017, 26, 4297-4310.	1.2	39
22	Hybrid multi-objective optimization of microstructural and mechanical properties of B4C/A356 composites fabricated by FSP using TOPSIS and modified NSGA-II. Transactions of Nonferrous Metals Society of China, 2017, 27, 2317-2333.	1.7	47
23	Optimization of AZ91 friction stir welding parameters using Taguchi method. Proceedings of the Institution of Mechanical Engineers, Part L. Journal of Materials: Design and Applications, 2016, 230, 291-302.	0.7	20
24	A cellular automaton model for microstructural simulation of friction stir welded AZ91 magnesium alloy. Modelling and Simulation in Materials Science and Engineering, 2016, 24, 035012.	0.8	31
25	Simulation of dynamic recrystallization process during friction stir welding of AZ91 magnesium alloy. International Journal of Advanced Manufacturing Technology, 2016, 83, 301-311.	1.5	75
26	Investigation of friction stir welding tool parameters using FEM and neural network. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2015, 229, 209-217.	0.7	22
27	Microstructural simulation of friction stir welding using a cellular automaton method: a microstructure prediction of AZ91 magnesium alloy. International Journal of Mechanical and Materials Engineering, 2015, 10 , .	1.1	40
28	Multi objective optimization of friction stir welding parameters using FEM and neural network. International Journal of Precision Engineering and Manufacturing, 2014, 15, 2351-2356.	1.1	70
29	Optimization of microstructural and mechanical properties of friction stir welding using the cellular automaton and Taguchi method. Materials & Design, 2014, 64, 660-666.	5.1	54
30	Characterization of the Influence of Tool Pin Profile on Microstructural and Mechanical Properties of Friction Stir Welding. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2014, 45, 1887-1894.	1.0	71
31	Influence of Aging Treatment on In-Situ Electrical Resistance Variation During Aging of Nickel-Rich NiTi Shape Memory Wires. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4429-4433.	1.1	2
32	Core modifications of sandwich panels fabricated by vacuum-assisted resin transfer molding. Journal of Composite Materials, 2013, 47, 1853-1863.	1.2	15
33	On the role of cooling and tool rotational direction on microstructure and mechanical properties of friction stir processed AZ91. International Journal of Advanced Manufacturing Technology, 2012, 63, 987-997.	1.5	67
34	Predicting the grain size and hardness of AZ91/SiC nanocomposite by artificial neural networks. International Journal of Advanced Manufacturing Technology, 2012, 63, 1095-1107.	1.5	53
35	Welding of Magnesium Alloys. , 2012, , .		13
36	Simulation of material flow in friction stir processing of a cast Al–Si alloy. Materials & Design, 2012, 40, 415-426.	5.1	126

#	Article	IF	CITATIONS
37	Eutectic Al–Si piston alloy surface transformed to modified hypereutectic alloy via FSP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 534, 557-567.	2.6	60
38	Simulation and experimental investigation of FSP of AZ91 magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6469-6477.	2.6	115
39	Experimental Investigation of Magnesium-Base Nanocomposite Produced by Friction Stir Processing: Effects of Particle Types and Number of Friction Stir Processing Passes. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 2820-2832.	1.1	112
40	Effects of SiC Particle Size and Process Parameters on the Microstructure and Hardness of AZ91/SiC Composite Layer Fabricated by FSP. Journal of Materials Engineering and Performance, 2011, 20, 1554-1562.	1,2	78
41	Characterization of AZ91/alumina nanocomposite produced by FSP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 2431-2440.	2.6	153
42	Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: Effect of SiC particles' size and volume fraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1740-1749.	2.6	266
43	Producing of AZ91/SiC composite by friction stir processing (FSP). International Journal of Advanced Manufacturing Technology, 2010, 51, 247-260.	1.5	189
44	Influence of Friction Stir Processing Parameters on the Fabrication of SiC/316L Surface Composite. Defect and Diffusion Forum, 2010, 297-301, 221-226.	0.4	25
45	Producing Ultrafine-Grained AZ91 from As-Cast AZ91 by FSP. Materials and Manufacturing Processes, 2010, 25, 1219-1226.	2.7	70
46	Production of Cu/SiC Nanocomposite Layers by Friction Stir Processing. Defect and Diffusion Forum, 0, 312-315, 319-324.	0.4	9
47	Effect of SiC Volume Fraction on the Microstructural and Mechanical Properties of Cu/SiC Composite Layer Fabricated by FSP. Defect and Diffusion Forum, 0, 312-315, 500-505.	0.4	1
48	Material flow modeling for the DSFSW of magnesium alloy. Journal of Strain Analysis for Engineering Design, 0, , 030932472097661.	1.0	13
49	Effect of tool pin profile on distribution of reinforcement particles during friction stir processing of B4C/aluminum composites. , 0, .		1
50	Wear and mechanical properties of surface hybrid metal matrix composites on Al–Si aluminum alloys fabricated by friction stir processing. , 0, .		1