Fabrizio Arciprete

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8905466/publications.pdf

Version: 2024-02-01

95 papers 1,456 citations

304743 22 h-index 35 g-index

96 all docs 96
docs citations

96 times ranked 1408 citing authors

#	Article	IF	CITATIONS
1	Epitaxial growth of GeTe/Sb2Te3 superlattices. Materials Science in Semiconductor Processing, 2022, 137, 106244.	4.0	3
2	Reflectance anisotropy spectroscopy of strain-engineered GaAsBi alloys. Applied Physics Letters, 2022, 120, .	3.3	5
3	Hints for a General Understanding of the Epitaxial Rules for van der Waals Epitaxy from Geâ€Sbâ€Te Alloys. Advanced Materials Interfaces, 2022, 9, .	3.7	6
4	Interface Formation during the Growth of Phase Change Material Heterostructures Based on Ge-Rich Ge-Sb-Te Alloys. Nanomaterials, 2022, 12, 1007.	4.1	4
5	Growth, Electronic and Electrical Characterization of Ge-Rich Ge–Sb–Te Alloy. Nanomaterials, 2022, 12, 1340.	4.1	6
6	Structural and Electrical Properties of Annealed Ge2Sb2Te5 Films Grown on Flexible Polyimide. Nanomaterials, 2022, 12, 2001.	4.1	4
7	Tailoring active sites of iron-nitrogen-carbon catalysts for oxygen reduction in alkaline environment: Effect of nitrogen-based organic precursor and pyrolysis atmosphere. Electrochimica Acta, 2021, 391, 138899.	5.2	14
8	Keep it simple and switch to pure tellurium. Science, 2021, 374, 1321-1322.	12.6	12
9	Disordering process of GeSb ₂ Te ₄ induced by ion irradiation. Journal Physics D: Applied Physics, 2020, 53, 134001.	2.8	1
10	Tailoring morphology and structure of manganese oxide nanomaterials to enhance oxygen reduction in microbial fuel cells. Synthetic Metals, 2020, 268, 116487.	3.9	10
11	Increasing Optical Efficiency in the Telecommunication Bands of Strain-Engineered Ga(As,Bi) Alloys. Physical Review Applied, 2020, 14, .	3.8	9
12	Graphene Oxide Oxygen Content Affects Physical and Biological Properties of Scaffolds Based on Chitosan/Graphene Oxide Conjugates. Materials, 2019, 12, 1142.	2.9	26
13	Two-dimensional antiferromagnetic ordering of the Mn/GaAs(001) interface. Physical Review B, 2019, 99, .	3.2	1
14	Crystallization Study of Geâ€Rich (GeTe) <i>_m</i> (Sb ₂ Te ₃) <i>_n</i> Using Twoâ€Step Annealing Process. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800632.	2.4	5
15	Interplay between Structural and Thermoelectric Properties in Epitaxial Sb ₂₊ <i>_x</i> Te ₃ Alloys. Advanced Functional Materials, 2019, 29, 1805184.	14.9	25
16	Electronic properties of GaAsBi(001) alloys at low Bi content. Physical Review Materials, 2019, 3, .	2.4	5
17	MnOx-based electrocatalysts for enhanced oxygen reduction in microbial fuel cell air cathodes. Journal of Power Sources, 2018, 390, 45-53.	7.8	64
18	Influence of surface crystal-orientation on transfer doping of V2O5/H-terminated diamond. Applied Physics Letters, 2018, 112, 181602.	3.3	23

#	Article	IF	Citations
19	Facile synthesis of graphene-phthalocyanine composites as oxygen reduction electrocatalysts in microbial fuel cells. Applied Catalysis B: Environmental, 2018, 237, 699-707.	20.2	89
20	Designing epitaxial GeSbTe alloys by tuning the phase, the composition, and the vacancy ordering. Journal of Applied Physics, $2018,123,.$	2.5	9
21	Tuning the growth for a selective nucleation of chains of Quantum Dots behaving as single photon emitters. Journal of Crystal Growth, 2017, 457, 177-183.	1.5	1
22	Graphene oxide nanoplatforms to enhance catalytic performance of iron phthalocyanine for oxygen reduction reaction in bioelectrochemical systems. Journal of Power Sources, 2017, 356, 381-388.	7.8	75
23	Modulation of van der Waals and classical epitaxy induced by strain at the Si step edges in GeSbTe alloys. Scientific Reports, 2017, 7, 1466.	3.3	21
24	Role of interfaces on the stability and electrical properties of Ge2Sb2Te5 crystalline structures. Scientific Reports, 2017, 7, 2616.	3.3	15
25	Chemical and structural arrangement of the trigonal phase in GeSbTe thin films. Nanotechnology, 2017, 28, 065706.	2.6	39
26	A Special Section on Effects of Strain in Semiconductor Heterostructures. Nanoscience and Nanotechnology Letters, 2017, 9, 1064-1065.	0.4	1
27	Stress-determined nucleation sites above GaAs-capped arrays of InAs quantum dots. Journal of Applied Physics, 2016, 120, 125704.	2.5	3
28	Anisotropic cation diffusion in the GaAs capping of InAs/GaAs(001) quantum dots. Journal of Applied Physics, 2016, 120, 235303.	2.5	1
29	Far-Infrared and Raman Spectroscopy Investigation of Phonon Modes in Amorphous and Crystalline Epitaxial GeTe-Sb2Te3 Alloys. Scientific Reports, 2016, 6, 28560.	3.3	45
30	Metal - Insulator Transition Driven by Vacancy Ordering in GeSbTe Phase Change Materials. Scientific Reports, 2016, 6, 23843.	3.3	93
31	2D Voronoi tessellation generated by lines and belts of dots. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 516-519.	2.1	1
32	Single QD emission from arrays of QD chains obtained by patterning-free method. International Journal of Higher Education Management, 2015, 1, 33-37.	1.3	3
33	In-line correlation and ordering of InAs/GaAs multistacked Quantum Dots structures. Journal of Crystal Growth, 2015, 419, 138-142.	1.5	4
34	Manipulating surface diffusion and elastic interactions to obtain quantum dot multilayer arrangements over different length scales. Applied Physics Letters, 2014, 105, .	3.3	12
35	Selective growth of InAs quantum dots on GaAs driven by as kinetics. Crystal Research and Technology, 2014, 49, 546-551.	1.3	1
36	The Unexpected Role of Arsenic in Driving the Selective Growth of InAs Quantum Dots on GaAs. ACS Nano, 2013, 7, 3868-3875.	14.6	14

#	Article	IF	CITATIONS
37	Role of As in the Anisotropic Positioning of Self-Assembled InAs Quantum Dots. Materials Research Society Symposia Proceedings, 2013, 1551, 3-9.	0.1	O
38	Kinetically driven selective growth of InAs quantum dots on GaAs. Journal of Materials Research, 2013, 28, 3201-3209.	2.6	9
39	Coarsening effect on island-size scaling: The model case InAs/GaAs(001). Physical Review E, 2012, 86, 061605.	2.1	10
40	Scaling behavior of GaAs and GaMnAs quantum rings grown by droplet epitaxy. Applied Physics Letters, 2012, 101, 141901.	3.3	6
41	InAs Epitaxy on GaAs(001): A Model Case of Strain-Driven Self-assembling of Quantum Dots. , 2012, , 73-125.		3
42	Magnetoelectric properties of oxygenated (Ga,Mn)As. Physical Review B, 2011, 83, .	3.2	1
43	Comparative study of low temperature growth of InAs and InMnAs quantum dots. Nanotechnology, 2011, 22, 195602.	2.6	6
44	Magnetism and carrier modulation in (Ga,Mn)As/organic-dye hybrid devices. Applied Physics Letters, 2011, 98, 022503.	3.3	1
45	The role of kinetics on the Mn-induced reconstructions of the GaAs(001) surface. Journal of Applied Physics, 2011, 109, .	2.5	6
46	Magnetic aftereffect in compressively strained GaMnAs studied using Kerr microscopy. Physical Review B, 2010, 81, .	3.2	2
47	Temperature-dependent Néel wall dynamics in GaMnAs/GaAs. New Journal of Physics, 2010, 12, 093022.	2.9	7
48	Temperature dependence of the size distribution function of InAs quantum dots on GaAs(001). Physical Review B, 2010, 81, .	3.2	32
49	XPS and STM study of Mn incorporation on the GaAs(001) surface. Superlattices and Microstructures, 2009, 46, 258-265.	3.1	4
50	Selective growth of InAs quantum dots on SiO ₂ -masked GaAs. Journal of Nanophotonics, 2009, 3, 031995.	1.0	3
51	Annealing effects on faceting of InAsâ^•GaAs(001) quantum dots. Applied Physics Letters, 2009, 94, 021901.	3.3	21
52	Single quantum dot emission by nanoscale selective growth of InAs on GaAs: A bottom-up approach. Applied Physics Letters, 2008, 93, 231904.	3.3	10
53	Complex domain-wall dynamics in compressively strained <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mtext>Ga</mml:mtext></mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	> ³ thml:mn	>10 >11
54	The InAs/GaAs(001) Quantum Dots Transition: Advances on Understanding. , 2008, , 1-23.		3

#	Article	IF	Citations
55	Sudden nucleation versus scale invariance of InAs quantum dots on GaAs. Physical Review B, 2007, 75, .	3.2	29
56	InAs/GaAs(001) epitaxy: kinetic effects in the two-dimensional to three-dimensional transition. Journal of Physics Condensed Matter, 2007, 19, 225006.	1.8	31
57	The Influence of the Wetting Layer Morphology on the Nucleation and the Evolution of InAs/GaAs (001) Quantum Dots. Semiconductor Conference, 2009 CAS 2009 International, 2007, , .	0.0	0
58	AIRFLY: Measurement of the Air Fluorescence Radiation Induced by Electrons. Nuclear Physics, Section B, Proceedings Supplements, 2006, 150, 186-189.	0.4	6
59	AIRFLY: Measurement of the uorescence yield in atmospheric gases. European Physical Journal D, 2006, 56, A361-A367.	0.4	6
60	How kinetics drives the two- to three-dimensional transition in semiconductor strained heterostructures: The case of InAsâ^•GaAs(001). Applied Physics Letters, 2006, 89, 041904.	3.3	37
61	Apparent critical thickness versus temperature for InAs quantum dot growth on GaAs(001). Applied Physics Letters, 2006, 88, 161903.	3.3	49
62	Adsorption of molecular oxygen on GaAs(001) studied using high-resolution electron energy-loss spectroscopy. Physical Review B, 2006, 73, .	3.2	7
63	Valence band and In-4d core level photoemission study of de-capped and ion-bombarded-annealed InAs(001) epitaxial surfaces. Surface Science, 2005, 576, 123-130.	1.9	11
64	Step erosion during nucleation of InAsâ•GaAs(001) quantum dots. Applied Physics Letters, 2005, 86, 241913.	3.3	50
65	Reflection high energy electron diffraction observation of surface mass transport at the two- to three-dimensional growth transition of InAs on GaAs(001). Applied Physics Letters, 2005, 87, 252101.	3.3	27
66	Surface states at the GaAs (001) 2×4 surface. Physical Review B, 2004, 69, .	3.2	19
67	Self-assembly of InAs and Si/Ge quantum dots on structured surfaces. Journal of Physics Condensed Matter, 2004, 16, S1503-S1534.	1.8	31
68	InxGa(1â^²x)As quantum dots grown on GaAs studied by EXAFS in total reflection mode (ReflEXAFS). Nuclear Instruments & Methods in Physics Research B, 2003, 200, 85-89.	1.4	8
69	Structural study of the InAs quantum-dot nucleation on GaAs(001). Microelectronics Journal, 2003, 34, 419-422.	2.0	0
70	Electronic anisotropy of the GaAs(001) surface studied by energy loss spectroscopy. Microelectronics Journal, 2003, 34, 595-597.	2.0	0
71	The GaAs()-c(4×4) surface: a new perspective from energy loss spectra. Surface Science, 2003, 524, L71-L76.	1.9	12
72	Anisotropy of the GaAs(001)- \hat{l}^2 2(2 \hat{A} —4) surface from high-resolution electron energy loss spectroscopy. Physical Review B, 2003, 67, .	3.2	9

#	Article	IF	Citations
73	Surface versus bulk contributions from reflectance anisotropy and electron energy loss spectra of the GaAs $(001)\hat{a}^{2}c(4\tilde{A}-4)$ surface. Physical Review B, 2003, 68, .	3.2	22
74	Tracing the two- to three-dimensional transition in the InAs/GaAs(001) heteroepitaxial growth. Physical Review B, 2003, 67, .	3.2	69
75	Morphological instabilities of the InAs/GaAs(001) interface and their effect on the self-assembling of InAs quantum-dot arrays. Applied Physics Letters, 2002, 81, 2270-2272.	3.3	29
76	Infrared surface absorption in Si(111)2 \tilde{A} —1 observed with reflectance anisotropy spectroscopy. Physical Review B, 2002, 66, .	3.2	33
77	In situ X-ray absorption measurements of the Cu/MgO() interface. Surface Science, 2002, 512, L341-L345.	1.9	10
78	Optical anisotropy of oxidized InAs() surfaces. Surface Science, 2002, 515, 281-286.	1.9	7
79	Morphology of Self-Assembled InAs Quantum Dots on GaAs(001). Materials Research Society Symposia Proceedings, 2001, 696, 1.	0.1	0
80	Morphology of Self-Assembled InAs Quantum Dots on GaAs(001) Materials Research Society Symposia Proceedings, 2001, 707, 671.	0.1	0
81	Sum rules in surface differential reflectivity and reflectance anisotropy spectroscopies. Applied Surface Science, 2001, 175-176, 777-782.	6.1	8
82	Kinetic aspects of the morphology of self-assembled InAs quantum dots on GaAs(001). Applied Physics Letters, 2001, 78, 320-322.	3.3	40
83	Analysis of InAs(001) surfaces by reflectance anisotropy spectroscopy. Physical Review B, 2001, 64, .	3.2	25
84	XAS STUDY OF (BaCuO2)2/(CaCuO2)n SUPERLATTICES. International Journal of Modern Physics B, 2000, 14, 2628-2633.	2.0	0
85	Dynamic behavior of silver islands growing on GaAs(001)2×4 substrate. Surface Science, 2000, 445, L17-L22.	1.9	8
86	EXAFS study of the [BaCuO2]2/[(Ca,Sr)CuO2]n artificial superconducting superlattices. Physica C: Superconductivity and Its Applications, 2000, 334, 64-76.	1.2	18
87	Comparative study of Ag growth on GaAs(001) and (110) surfaces. Surface Science, 1998, 419, 24-28.	1.9	5
88	Electronic structure of the GaAs(001)2 \tilde{A} —4 and GaAs(110) surfaces studied by high-resolution electron-energy-loss spectroscopy. Physical Review B, 1998, 58, R10139-R10142.	3.2	4
89	Electrical transport properties of artificially layered films of [BaCuO2]2/[(Sr,Ca)CuO2]n. Applied Physics Letters, 1997, 71, 959-961.	3.3	31
90	Observation of interface states by high-resolution electron-energy-loss spectroscopy in metal-GaAs(110) junctions. Physical Review B, 1996, 53, 12948-12955.	3.2	13

#	Article	IF	CITATIONS
91	Electron energy loss study of Ag- and Auî—,GaAs(110) interfaces. Journal of Electron Spectroscopy and Related Phenomena, 1995, 76, 449-454.	1.7	О
92	Angular dependence of the oxygen K-edge fine structure in electron-energy loss spectra of Bi2â^xPbxSr2CaCu2O8. Physica C: Superconductivity and Its Applications, 1993, 218, 301-308.	1.2	1
93	Reactivity of the Bi2Sr2CaCu2O8 and Bi1.7Pb0.3Sr2CaCu2O8 surfaces for d-metal overlayers. Physica C: Superconductivity and Its Applications, 1992, 196, 79-89.	1.2	9
94	Interface formation between d metals and the Bi2Sr2CaCu2O8 surface. Physica C: Superconductivity and Its Applications, 1991, 180, 101-107.	1.2	6
95	EELPS investigation of YBa-2Cu3O7-δthin films and sintered samples. Physica C: Superconductivity and Its Applications, 1991, 180, 132-135.	1.2	1