Adam H Sobel

List of Publications by Year in descending order

[^0]

1	Large-scale waves interacting with deep convection in idealized mesoscale model simulations. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 55, 45.	0.8	20
2	Formation of tropical storms in an atmospheric general circulation model. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 56, 56.	0.8	15
3	Tropical cyclones in the GISS ModelE2. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 68, 31494.	0.8	11
4	A Unified Moisture Mode Theory for the Maddenâe"Julian Oscillation and the Boreal Summer Intraseasonal Oscillation. Journal of Climate, 2022, 35, 1267-1291.	1.2	14
5	Assessing the Vertical Velocity of the East Pacific ITCZ. Geophysical Research Letters, 2022, 49,	1.5	3
6	Evolution of Tropical Cyclone Properties Across the Development Cycle of the CISSâ€モ3 Clobal Climate Model. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	2
7	On the Allâ€india Rainfall Index and Subâ€india Rainfall Heterogeneity. Geophysical Research Letters, 2022, 49,	1.5	1
8	A Multivariate Index for Tropical Intraseasonal Oscillations Based on the Seasonallyâ€Varying Modal Structures. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5
9	The Influence of Intraseasonal Oscillations on Humid Heat in the Persian Gulf and South Asia. Journal of Climate, 2022, 35, 4309-4329.	1.2	3
10	New York State Hurricane Hazard: History and Future Projections. Journal of Applied Meteorology and Climatology, 2022, 61, 613-629.	0.6	3
11	An Investigation of Tropical Cyclone Development Pathways as an Indicator of Extratropical Transition. Journal of the Meteorological Society of Japan, 2022, 100, 707-724.	0.7	3
12	Introduction: Critical and historical perspectives on usable climate science. Climatic Change, 2022, 172,	1.7	1
13	A Filtered Model for the Tropical Intraseasonal Moisture Mode. Geophysical Research Letters, 2022, 49,	1.5	1

14 The Moisture Mode Framework of the Maddenâ€"Julian Oscillation. World Scientific Series on Asia-Pacific Weather and Climate, 2021, , 273-287.
0.21

Propagating Mechanisms of the 2016 Summer BSISO Event: Airâ€Sea Coupling, Vorticity, and Moisture
Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033284.
1.2

5

Variability in QBO Temperature Anomalies on Annual and Decadal Time Scales. Journal of Climate, 2021, 34, 589-605.

Large-Scale State and Evolution of the Atmosphere and Ocean during PISTON 2018. Journal of Climate,
2021, 34, 5017-5035.

Making the transition to a green economy: What is our responsibility as citizens?. Bulletin of the Atomic Scientists, 2021, 77, 67-69.

Statisticalấ"Dynamical Downscaling Projections of Tropical Cyclone Activity in a Warming Climate:
30 Two Diverging Genesis Scenarios. Journal of Climate, 2020, 33, 4815-4834.
1.2

69

Subseasonal Predictions of Tropical Cyclone Occurrence and ACE in the S2S Dataset. Weather and
0.5

22
31 Forecasting, 2020, 35, 921-938.

Localness in Climate Change. Comparative Studies of South Asia, Africa and the Middle East, 2020, 40,
0.1

15
0.5

4

Aerosol versus Greenhouse Gas Effects on Tropical Cyclone Potential Intensity and the Hydrologic

[^1]1.2

30
A Global Climatology of Extratropical Transition. Part l: Characteristics across Basins. Journal of
Climate, 2019,32,3557-3582.
Impact of the QBO on Prediction and Predictability of the MJO Convection. Journal of Geophysical
Research D: Atmospheres, 2019, 124, 11766-11782.

44 Tropical Cyclone Prediction on Subseasonal Time-Scales. Tropical Cyclone Research and Review, 2019, 8, 150-165.
1.0

26
Prediction and predictability of tropical intraseasonal convection: seasonal dependence and the
Maritime Continent prediction barrier. Climate Dynamics, 2019, 52, 6015-6031.

$46 \quad$| Understanding the Dynamics of Future Changes in Extreme Precipitation Intensity. Geophysical |
| :--- |
| Research Letters, 2018, 45, 2870-2878. |

47 An Environmentally Forced Tropical Cyclone Hazard Model. Journal of Advances in Modeling Earth
Systems, 2018, 10, 223-241.
55
56

Summary of workshop on sub-seasonal to seasonal predictability of extreme weather and climate. Npj Climate and Atmospheric Science, 2018, 1, .
2.6

57 What Is the Polar Vortex and How Does It Influence Weather?. Bulletin of the American
1.7

162
57 Meteorological Society, 2017, 98, 37-44.
0.5

15
Role of the Convection Scheme in Modeling Initiation and Intensification of Tropical Depressions over
58 the North Atlantic. Monthly Weather Review, 2017, 145, 1495-1509.

Seamless precipitation prediction skill comparison between two global models. Quarterly Journal of
1.0
the Royal Meteorological Society, 2017, 143, 374-383.
Factors Controlling Rain on Small Tropical Islands: Diurnal Cycle, Large-Scale Wind Speed, and
Topography. Journals of the Atmospheric Sciences, 2017, 74, 3515-3532.
Coupling with ocean mixed layer leads to intraseasonal variability in tropical deep convection:
Evidence from cloudâ€resolving simulations. Journal of Advances in Modeling Earth Systems, 2017, 9,
$616-626$.

65	Changes in the structure and propagation of the <scp>M</scp>JO with increasing <scp>C</scp>O<sub>2<\|sub>. Journal of Advances in Modeling Earth Systems, 2017, 9, 1251-1268.	1.3	44
66	Characterization of Moist Processes Associated With Changes in the Propagation of the MJO With Increasing CO₂. Journal of Advances in Modeling Earth Systems, 2017, 9, 2946-2967.	1.3	32
67	Role of Radiativeâ€"Convective Feedbacks in Spontaneous Tropical Cyclogenesis in Idealized Numerica Simulations. Journals of the Atmospheric Sciences, 2016, 73, 2633-2642.	0.6	85

68 Tropical cyclones and climate change. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 65-89.
$3.6 \quad 471$
Intercomparison of methods of coupling between convection and largeâ€scale circulation: 2 .
Comparison over nonuniform surface conditions. Journal of Advances in Modeling Earth Systems,
$2016,8,387-405$. Modeling the <scp>MJO</scp> in a cloudâ€resolving model with parameterized largeâ€ $\mathbf{s c a l e}$ dynamics:

Comparison over nonuniform surface conditions. Journal of Advances in Modeling Earth Systems,
2016, 8, 387-405.
Modeling the <scp>MJO</scp> in a cloudâ€resolving model with parameterized largeâ€scale dynamics:
70 Vertical structure, radiation, and horizontal advection of dry air. Journal of Advances in Modeling
1.3

41

Autoregressive Modeling for Tropical Cyclone Intensity Climatology. Journal of Climate, 2016, 29,
1.2 25

$\begin{array}{ll} & \\ & \text { Autoregress } \\ 7815-7830 .\end{array}$

Northern hemisphere tropical cyclones during the quasi-El NiÃ ± 0 of late 2014. Natural Hazards, 2016,
83, 1717-1729.
73 Human influence on tropical cyclone intensity. Science, 2016, 353, 242-246.

$75 \quad$Forcings and feedbacks on convection in the 2010 Pakistan flood: Modeling extreme precipitation with interactive largeâ€scale ascent. Journal of Advances in Modeling Earth Systems, 2016, 8, 1055-1072.	
$76 \quad$Modeling the Interaction between Quasigeostrophic Vertical Motion and Convection in a Single Column. Journals of the Atmospheric Sciences, 2016, 73, 1101-1117.	
$77 \quad$Rapid intensification and the bimodal distribution of tropical cyclone intensity. Nature Communications, $2016,7,10625$.	0.6

Response of Atmospheric Convection to Vertical Wind Shear: Cloud-System-Resolving Simulations 78 with Parameterized Large-Scale Circulation. Part II: Effect of Interactive Radiation. Journals of the Atmospheric Sciences, 2016, 73, 199-209.
79 Understanding the Drivers of Variability in Severe Convection: Bringing Together the Scientific and Insurance Communities. Bulletin of the American Meteorological Society, 2016, 97, ES221-ES223. 1.7 5
Intercomparison of methods of coupling between convection and largeâ€scale circulation: 1.
Comparison over uniform surface conditions. Journal of Advances in Modeling Earth Systems, 2015, 7,1.3
1576-1601.
81 Fog and rain in the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11473-11477.
Intraseasonal Variability and Seasonal March of the Moist Static Energy Budget over the Eastern 82 Maritime Continent during CINDY2011/DYNAMO. Journal of the Meteorological Society of Japan, 2015, 0.7 22 93A, 81-100.
83 Simulations of cloudâ $€$ radiation interaction using largeâ€scale forcing derived from the CINDY/DYNAMO northern sounding array. Journal of Advances in Modeling Earth Systems, 2015, 7, 1472-1498.
Hurricanes and Climate: The U.S. CLIVAR Working Group on Hurricanes. Bulletin of the American
84 Meteorological Society, 2015, 96, 997-1017.1.7158
$1.7 \quad 2$
85 Hurricanes and Climate: The U.S. CLIVARProbabilistic Multiple Linear Regression Modeling for Tropical Cyclone Intensity. Monthly Weather0.5Review, 2015, 143, 933-954.45
91 Clouds, circulation and climate sensitivity. Nature Geoscience, 2015, 8, 261-268. 647

92 Responses of Tropical Deep Convection to the QBO: Cloud-Resolving Simulations. Journals of the

93 Effect of Surface Fluxes versus Radiative Heating on Tropical Deep Convection. Journals of the
Atmospheric Sciences, 2015, 72, 3378-3388.

Propagating versus Nonpropagating Maddenâ $€^{\prime \prime} J u l i a n ~ O s c i l l a t i o n ~ E v e n t s . ~ J o u r n a l ~ o f ~ C l i m a t e, ~ 2014, ~ 27, ~$
1.2

194

111-125.

95 Radiativeâ€"Convective Equilibrium over a Land Surface. Journal of Climate, 2014, 27, 8611-8629.
1.2

14

96 Testing the Performance of Tropical Cyclone Genesis Indices in Future Climates Using the HiRAM
Model. Journal of Climate, 2014, 27, 9171-9196.
1.2

109
Seamless Precipitation Prediction Skill in the Tropics and Extratropics from a Global Model. Monthly
Weather Review, 2014, 142, $556-1569$
Weather Review, 2014, 142, 1556-1569.
0.5
65

98 Gross Moist Stability and MJO Simulation Skill in Three Full-Physics GCMs. Journals of the Atmospheric Sciences, 2014, 71, 3327-3349.
$0.6 \quad 84$
An Empirical Relation between U.S. Tornado Activity and Monthly Environmental Parameters. Journal
of Climate, 2014, 27, 2983-2999.

$100 \quad$| Characteristics of tropical cyclones in highấeresolution models in the present climate. Journal of |
| :--- |
| Advances in Modeling Earth Systems, 2014, 6, 1154-1172. |

$101 \quad$| Impact of the Tropopause Temperature on the Intensity of Tropical Cyclones: An Idealized Study Using a |
| :--- |
| Mesoscale Model. Journals of the Atmospheric Sciences, 2014, 71, 4333-4348. |

260

101 Mesoscale Model. Journals of the Atmospheric Sciences, 2014, 71, 4333-4348.
0.659

102 Moist Static Energy Budget of the MJO during DYNAMO. Journals of the Atmospheric Sciences, 2014, 71,
4276-4291.
0.6

206

Response of Atmospheric Convection to Vertical Wind Shear: Cloud-System-Resolving Simulations
103 with Parameterized Large-Scale Circulation. Part I: Specified Radiative Cooling. Journals of the
$0.6 \quad 46$
Atmospheric Sciences, 2014, 71, 2976-2993.
104 The Effect of Greenhouse Gasâ€"Induced Changes in SST on the Annual Cycle of Zonal Mean Tropical
1.2

Precipitation. Journal of Climate, 2014, 27, 4544-4565.
43

105 Response of tropical sea surface temperature, precipitation, and tropical cycloneâ€related variables to
1.3

77
changes in global and local forcing. Journal of Advances in Modeling Earth Systems, 2013, 5, 447-458.

An Idealized Prototype for Large-Scale Landâ€"Atmosphere Coupling. Journal of Climate, 2013, 26,
2379-2389.

Implications for Recent Observations. Journal of Climate, 2013, 26, 4304-4321.
1.2
109 Tropical Intraseasonal Variability in Version 3 of the GFDL Atmosphere Model. Journal of Climate, 2013, 1.2 53
26, 426-449.Using Weather Data and Climate Model Output in Economic Analyses of Climate Change. Review of
Kinetic Energy Budget for the Maddenâ€"Julian Oscillation in a Multiscale Framework. Journal of
115 Projected Changes in the Seasonal Cycle of Surface Temperature. Journal of Climate, 2012, 25, 6359-6374.
119 The Tropical Subseasonal Variability Simulated in the NASA GISS General Circulation Model. Journal ofClimate, 2012, 25, 4641-4659.
.2 148
Association of U.S. tornado occurrence with monthly environmental parameters. Geophysical1.582Research Letters, 2012, 39, .3.333Impact of imposed drying on deep convection in a cloudâ€resolving model. Journal of GeophysicalResearch, 2012, 117, .1.34Implementation of the Quasiâ€equilibrium Tropical Circulation Model 2 (QTCM2): Global simulations122 and convection sensitivity to free tropospheric moisture. Journal of Advances in Modeling Earth
Systems, 2012, 4, .

[^2]| 129 | A Poisson Regression Index for Tropical Cyclone Genesis and the Role of Large-Scale Vorticity in Genesis. Journal of Climate, 2011, 24, 2335-2357. | 1.2 | 195 |
| :---: | :---: | :---: | :---: |
| 130 | Effects of Relative and Absolute Sea Surface Temperature on Tropical Cyclone Potential Intensity Using a Single-Column Model. Journal of Climate, 2011, 24, 183-193. | 1.2 | 82 |
| 131 | Projected Future Seasonal Changes in Tropical Summer Climate. Journal of Climate, 2011, 24, 473-487. | 1.2 | 74 |
| 132 | A Systematic Relationship between Intraseasonal Variability and Mean State Bias in AGCM Simulations. Journal of Climate, 2011, 24, 5506-5520. | 1.2 | 151 |
| 133 | An observational study of multiple tropical cyclone events in the western north Pacific. Tellus, Series A: Dynamic Meteorology and Oceanography, 2010, 62, 256-265. | 0.8 | 20 |

Revisiting the Influence of the Quasi-Biennial Oscillation on Tropical Cyclone Activity. Journal of
Climate, 2010, 23, 5810-5825.

Diagnosis of Zonal Mean Relative Humidity Changes in a Warmer Climate. Journal of Climate, 2010, 23, 4556-4569.
1.2

46

137 Multiple Equilibria of the Hadley Circulation in an Intermediate-Complexity Axisymmetric Model.
Journal of Climate, 2010, 23, 1760-1778.
$1.2 \quad 37$

Surface Fluxes and Tropical Intraseasonal Variability: a Reassessment. Journal of Advances in
138 Modeling Earth Systems, 2010, 2,.
1.3

122

139 Intraseasonal Variability in an Aquaplanet General Circulation Model. Journal of Advances in
1.3

101
Modeling Earth Systems, 2010, 2, .

Multiple equilibria in a cloudâ€resolving model using the weak temperature gradient approximation.
140 Journal of Geophysical Research, 2010, 115,.
3.3

67

The Influence of Natural Climate Variability on Tropical Cyclones, and Seasonal Forecasts of Tropical
$0.2 \quad 55$
141 Cyclone Activity. World Scientific Series on Asia-Pacific Weather and Climate, 2010, , 325-360.

Foreword: R. Alan Plumbâ€"A brief biographical sketch and personal tribute. Geophysical Monograph
0.1
o
142 Series, 2010, , vii-xi.

The Effect of Imposed Drying on Parameterized Deep Convection. Journals of the Atmospheric
Sciences, 2009, 66, 2085-2096.
0.6

24

145 Diagnosis of the MJO Modulation of Tropical Cyclogenesis Using an Empirical Index. Journals of the
Atmospheric Sciences, 2009, 66, 3061-3074.

Influence of condensate evaporation on water vapor and its stable isotopes in a GCM. Geophysical Research Letters, 2009, 36, .

Delayed Sahel rainfall and global seasonal cycle in a warmer climate. Geophysical Research Letters, 2009, 36, .

Singleâ€layer axisymmetric model for a Hadley circulation with parameterized eddy momentum forcing. Journal of Advances in Modeling Earth Systems, 2009, 1, .

149 The Mechanics of Gross Moist Stability. Journal of Advances in Modeling Earth Systems, 2009, 1, .
1.3
1.7

247
150 A global perspective on African climate. Climatic Change, 2008, 90, 359-383.

151 The role of surface heat fluxes in tropical intraseasonal oscillations. Nature Geoscience, 2008, 1,
$653-657$.

Instability of the axisymmetric monsoon flow and intraseasonal oscillation. Journal of Geophysical
Research, 2008, 113, .

SST Forcings and Sahel Rainfall Variability in Simulations of the Twentieth and Twenty-First Centuries.
Journal of Climate, 2008, 21, 3471-3486.

Oceanâ€"Atmosphere Coupling in the Monsoon Intraseasonal Oscillation: A Simple Model Study.
Journal of Climate, 2008, 21, 5254-5270.

On the Wavelength of the Rossby Waves Radiated by Tropical Cyclones. Journals of the Atmospheric
155 On the Wavelength of the Ross $\begin{aligned} & \text { Sciences, 2008, 65, 644-654. }\end{aligned}$
0.6

23

The Mesoscale Characteristics of Tropical Oceanic Precipitation during Kelvin and Mixed
156 Rossbyâ€"Gravity Wave Events. Monthly Weather Review, 2008, 136, 3446-3464.
0.5

16

Poleward-Propagating Intraseasonal Monsoon Disturbances in an Intermediate-Complexity
Axisymmetric Model. Journals of the Atmospheric Sciences, 2008, 65, 470-489.

Chapter 8 Simple Models of Ensemble-Averaged Tropical Precipitation and Surface Wind, Given the Sea
Surface Temperature. , 2008, , 219-251.

159 Idealized Hot Spot Experiments with a General Circulation Model. Journal of Climate, 2007, 20, 908-925. 11

Use of a Cenesis Potential Index to Diagnose ENSO Effects on Tropical Cyclone Genesis. Journal of Climate, 2007, 20, 4819-4834.

Workshop on Tropical Cyclones and Climate. Bulletin of the American Meteorological Society, 2007, 88, 389-391.

Relationship between the potential and actual intensities of tropical cyclones on interannual time scales. Geophysical Research Letters, 2007, 34, .

163 Sahel climate change: Workshop on Sahel climate change, Columbia University, New York, 19-2 March
2007. Eos, 2007, 88, 295-295.

164 Multiple equilibria in a singleâ€ column model of the tropical atmosphere. Geophysical Research Letters, 2007, 34, .

181 Surface Fluxes and Ocean Coupling in the Tropical Intraseasonal Oscillation. Journal of Climate, 2004, 1.2 176
17, 4368-4386.
Formation of tropical storms in an atmospheric general circulation model. Tellus, Series A: Dynamic
185 Large-scale waves interacting with deep convection in idealized mesoscale model simulations. Tellus,
Series A: Dynamic Meteorology and Oceanography, 2003, 55, 45-60.

$186 \quad$| A role for ocean biota in tropical intraseasonal atmospheric variability. Geophysical Research Letters, |
| :--- |
| 2003, 30,. |

Correction to â€œA role for ocean biota in tropical intraseasonal atmospheric variabilityâ€: Geophysical
Research Letters, 2003, 30, .

188 A Simple Time-Dependent Model of SST Hot Spots. Journal of Climate, 2003, 16, 3978-3992.
The Gill Model and the Weak Temperature Gradient Approximation. Journals of the Atmospheric
Sciences, 2003, 60, 451-460.
On On the Coexistence of an Evaporation Minimum and Precipitation Maximum in the Warm Pool. Journal
of Climate, 2003, 16, 1003-1009.
191 Water vapor as an active scalar in tropical atmospheric dynamics. Chaos, 2002, 12, 451-459. 1.0 19
The Hadley Circulation and the Weak Temperature Gradient Approximation. Journals of the

The Weak Temperature Gradient Approximation and Balanced Tropical Moisture Waves*. Journals of
Effect of ENSO and the MJO on western North Pacific tropical cyclones. Geophysical Research Letters,
203 Diffusion versus Nonlocal Models of Stratospheric Mixing, in Theory and Practice. Journals of the 0.6Development of Synoptic-Scale Disturbances over the Summertime Tropical Northwest Pacific.
205 Methods of Calculating Transport across the Polar Vortex Edge. Journals of the Atmospheric

[^0]: Source: https://exaly.com/author-pdf/8905330/publications.pdf
 Version: 2024-02-01

[^1]: 35
 Moist Static Energy Budget Analysis of Tropical Cyclone Intensification in High-Resolution Climate
 Models. Journal of Climate, 2019, 32, 6071-6095.

[^2]: cycles. Climate Dynamics, 2012, 39, 239-258.

