Lucas M Arruda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8905296/publications.pdf

Version: 2024-02-01

840776 996975 15 482 11 15 citations h-index g-index papers 15 15 15 611 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Thermal- and Light-Induced Spin-Crossover Characteristics of a Functional Iron(II) Complex at Submonolayer Coverage on HOPG. Journal of Physical Chemistry C, 2021, 125, 13925-13932.	3.1	9
2	A full gap above the Fermi level: the charge density wave of monolayer VS2. Nature Communications, 2021, 12, 6837.	12.8	16
3	Effect of ligand methylation on the spin-switching properties of surface-supported spin-crossover molecules. Journal of Physics Condensed Matter, 2020, 32, 114003.	1.8	18
4	Surface-orientation- and ligand-dependent quenching of the spin magnetic moment of Co porphyrins adsorbed on Cu substrates. Physical Chemistry Chemical Physics, 2020, 22, 12688-12696.	2.8	11
5	Modifying the Magnetic Anisotropy of an Iron Porphyrin Molecule by an on-Surface Ring-Closure Reaction. Journal of Physical Chemistry C, 2019, 123, 14547-14555.	3.1	15
6	Europium Cyclooctatetraene Nanowire Carpets: A Low-Dimensional, Organometallic, and Ferromagnetic Insulator. Journal of Physical Chemistry Letters, 2019, 10, 911-917.	4.6	18
7	Highly Efficient and Bidirectional Photochromism of Spirooxazine on Au(111). Journal of Physical Chemistry C, 2018, 122, 8031-8036.	3.1	11
8	Evolution of cooperativity in the spin transition of an iron(II) complex on a graphite surface. Nature Communications, 2018, 9, 2984.	12.8	73
9	Vacuum-Evaporable Spin-Crossover Complexes in Direct Contact with a Solid Surface: Bismuth versus Gold. Journal of Physical Chemistry C, 2017, 121, 1210-1219.	3.1	71
10	Reversible Switching of Spiropyran Molecules in Direct Contact With a Bi(111) Single Crystal Surface. Advanced Functional Materials, 2017, 27, 1702280.	14.9	13
11	Light-induced photoisomerization of a diarylethene molecular switch on solid surfaces. Journal of Physics Condensed Matter, 2017, 29, 374001.	1.8	8
12	Soft-x-ray-induced spin-state switching of an adsorbed Fe(II) spin-crossover complex. Journal of Physics Condensed Matter, 2017, 29, 394003.	1.8	31
13	Vacuum-evaporable spin-crossover complexes: physicochemical properties in the crystalline bulk and in thin films deposited from the gas phase. Journal of Materials Chemistry C, 2015, 3, 7870-7877.	5 . 5	65
14	The temperature-dependent single-crystal Raman spectroscopy of a model dipeptide: l-Alanyl-l-alanine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 148, 244-249.	3.9	6
15	Highly Efficient Thermal and Light-Induced Spin-State Switching of an Fe(II) Complex in Direct Contact with a Solid Surface. ACS Nano, 2015, 9, 8960-8966.	14.6	117