
Satoshi Ishii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8904792/publications.pdf Version: 2024-02-01

Сатосні Існії

#	Article	IF	CITATIONS
1	Erosion and deposition divergently affect the structure of soil bacterial communities and functionality. Catena, 2022, 209, 105805.	2.2	14
2	Unraveling encapsulated growth of Nitrosomonas europaea in alginate: An experimental and modeling study. Water Research, 2022, 208, 117857.	5.3	2
3	Bioaugmentation potential of a cold-adapted and nitrate-reducing fungus to enhance nitrate removal in woodchip bioreactors. Bioresource Technology Reports, 2022, 17, 100969.	1.5	1
4	Determination of ¹⁵ N/ ¹⁴ N of Ammonium, Nitrite, Nitrate, Hydroxylamine, and Hydrazine Using Colorimetric Reagents and Matrix-Assisted Laser Desorption Ionization–Time-of-Flight Mass Spectrometry (MALDI-TOF MS). Applied and Environmental Microbiology, 2022, 88, e0241621.	1.4	1
5	Metagenomics reveals global-scale contrasts in nitrogen cycling and cyanobacterial light-harvesting mechanisms in glacier cryoconite. Microbiome, 2022, 10, 50.	4.9	10
6	Temporal dynamics of Campylobacter and Arcobacter in a freshwater lake that receives fecal inputs from migratory geese. Water Research, 2022, 217, 118397.	5.3	7
7	Halophytes increase rhizosphere microbial diversity, network complexity and function in inland saline ecosystem. Science of the Total Environment, 2022, 831, 154944.	3.9	28
8	Correction for Oshiki et al., "Determination of ¹⁵ N/ ¹⁴ N of Ammonium, Nitrite, Nitrate, Hydroxylamine, and Hydrazine Using Colorimetric Reagents and Matrix-Assisted Laser Desorption Ionization–Time-of-Flight Mass Spectrometry (MALDI-TOF MS)― Applied and Environmental Microbiology, 2022, , e0052522.	1.4	0
9	The Microbial Nitrogen Cycling, Bacterial Community Composition, and Functional Potential in a Natural Grassland Are Stable from Breaking Dormancy to Being Dormant Again. Microorganisms, 2022, 10, 923.	1.6	6
10	Invasive earthworms alter forest soil microbiomes and nitrogen cycling. Soil Biology and Biochemistry, 2022, 171, 108724.	4.2	11
11	Afforestation can lower microbial diversity and functionality in deep soil layers in a semiarid region. Global Change Biology, 2022, 28, 6086-6101.	4.2	40
12	Isolation of coldâ€adapted nitrateâ€reducing fungi that have potential to increase nitrate removal in woodchip bioreactors. Journal of Applied Microbiology, 2021, 131, 197-207.	1.4	16
13	Simultaneous removal of nitrate and heavy metals in a continuous flow nitrate-dependent ferrous iron oxidation (NDFO) bioreactor. Chemosphere, 2021, 262, 127838.	4.2	13
14	Erosion reduces soil microbial diversity, network complexity and multifunctionality. ISME Journal, 2021, 15, 2474-2489.	4.4	273
15	Fungal denitrification revisited – Recent advancements and future opportunities. Soil Biology and Biochemistry, 2021, 157, 108250.	4.2	49
16	Application of manure from cattle administered antibiotics has sustained multi-year impacts on soil resistome and microbial community structure. Soil Biology and Biochemistry, 2021, 157, 108252.	4.2	39
17	Genome Sequence of Linnemannia hyalina Strain SCG-10, a Cold-Adapted and Nitrate-Reducing Fungus Isolated from Cornfield Soil in Minnesota, USA. Microbiology Resource Announcements, 2021, 10, e0069221.	0.3	2
18	Encapsulating microorganisms to enhance biological nitrogen removal in wastewater: recent advancements and future opportunities. Environmental Science: Water Research and Technology, 2021, 7, 1402-1416.	1.2	10

#	Article	IF	CITATIONS
19	Role of wastewater treatment plants on environmental abundance of Antimicrobial Resistance Genes in Chilean rivers. International Journal of Hygiene and Environmental Health, 2020, 223, 56-64.	2.1	27
20	Redox stratification within cryoconite granules influences the nitrogen cycle on glaciers. FEMS Microbiology Ecology, 2020, 96, .	1.3	19
21	Fast, sensitive, and reliable detection of waterborne pathogens by digital PCR after coagulation and foam concentration. Journal of Bioscience and Bioengineering, 2020, 130, 76-81.	1.1	9
22	Quantification of antibiotic resistance genes for environmental monitoring: Current methods and future directions. Current Opinion in Environmental Science and Health, 2020, 16, 47-53.	2.1	19
23	Simple and reliable enumeration of Escherichia coli concentrations in wastewater samples by measuring β-d-glucuronidase (GUS) activities via a microplate reader. Science of the Total Environment, 2020, 715, 136928.	3.9	15
24	Isolation and characterization of denitrifiers from woodchip bioreactors for bioaugmentation application. Journal of Applied Microbiology, 2020, 129, 590-600.	1.4	22
25	Great Lakes <i>Cladophora</i> harbors phylogenetically diverse nitrogenâ€fixing microorganisms. Environmental DNA, 2019, 1, 186-195.	3.1	5
26	Growth and antibiotic resistance acquisition of Escherichia coli in a river that receives treated sewage effluent. Science of the Total Environment, 2019, 690, 696-704.	3.9	22
27	Antibiotic Resistance Genes in Freshwater Trout Farms in a Watershed in Chile. Journal of Environmental Quality, 2019, 48, 1462-1471.	1.0	16
28	Complete Genome Sequence of a Novel Myoviridae Phage, SfΦ01, Infecting Shigella spp. Microbiology Resource Announcements, 2019, 8, .	0.3	1
29	A microfluidic platform for the simultaneous quantification of methanogen populations in anaerobic digestion processes. Environmental Microbiology, 2019, 21, 1798-1808.	1.8	11
30	Denitrifying Bacteria Active in Woodchip Bioreactors at Low-Temperature Conditions. Frontiers in Microbiology, 2019, 10, 635.	1.5	33
31	Ecology of Pathogens and Antibiotic-resistant Bacteria in Environments: Challenges and Opportunities. Microbes and Environments, 2019, 34, 1-4.	0.7	12
32	Potentially Mobile Denitrification Genes Identified in <i>Azospirillum</i> sp. Strain TSH58. Applied and Environmental Microbiology, 2019, 85, .	1.4	16
33	Impact of long-term grazing exclusion on soil microbial community composition and nutrient availability. Biology and Fertility of Soils, 2019, 55, 121-134.	2.3	66
34	Association between submerged aquatic vegetation and elevated levels of Escherichia coli and potential bacterial pathogens in freshwater lakes. Science of the Total Environment, 2019, 657, 319-324.	3.9	21
35	Experimental Evidence for in Situ Nitric Oxide Production in Anaerobic Ammonia-Oxidizing Bacterial Granules. Environmental Science & Technology, 2018, 52, 5744-5752.	4.6	19
36	Microfluidic quantification of multiple enteric and opportunistic bacterial pathogens in roof-harvested rainwater tank samples. Environmental Monitoring and Assessment, 2018, 190, 105.	1.3	11

#	Article	IF	CITATIONS
37	Nitrogen Cycle Evaluation (NiCE) Chip for Simultaneous Analysis of Multiple N Cycle-Associated Genes. Applied and Environmental Microbiology, 2018, 84, .	1.4	23
38	A Microfluidic Quantitative Polymerase Chain Reaction Method for the Simultaneous Analysis of Dozens of Antibiotic Resistance and Heavy Metal Resistance Genes. Environmental Science and Technology Letters, 2018, 5, 20-25.	3.9	38
39	Improved simultaneous quantification of multiple waterborne pathogens and fecal indicator bacteria with the use of a sample process control. Water Research, 2018, 137, 193-200.	5.3	25
40	Presence of Cu-Type (NirK) and <i>cd</i> ₁ -Type (NirS) Nitrite Reductase Genes in the Denitrifying Bacterium <i>Bradyrhizobium nitroreducens</i> sp. nov Microbes and Environments, 2018, 33, 326-331.	0.7	37
41	High-Throughput flaA Short Variable Region Sequencing to Assess Campylobacter Diversity in Fecal Samples From Birds. Frontiers in Microbiology, 2018, 9, 2201.	1.5	8
42	Precipitation influences pathogenic bacteria and antibiotic resistance gene abundance in storm drain outfalls in coastal sub-tropical waters. Environment International, 2018, 116, 308-318.	4.8	92
43	Microfluidic PCR Amplification and MiSeq Amplicon Sequencing Techniques for High-Throughput Detection and Genotyping of Human Pathogenic RNA Viruses in Human Feces, Sewage, and Oysters. Frontiers in Microbiology, 2018, 9, 830.	1.5	29
44	Complete Genome Sequence of Klebsiella quasipneumoniae Strain S05, a Fouling-Causing Bacterium Isolated from a Membrane Bioreactor. Genome Announcements, 2018, 6, .	0.8	3
45	Investigation of <i>Escherichia coli</i> in Urban Steam with Inflow of Treated Wastewater. Journal of Japan Society on Water Environment, 2018, 41, 19-26.	0.1	2
46	Environmental <i>Escherichia coli</i> : ecology and public health implications-a review. Journal of Applied Microbiology, 2017, 123, 570-581.	1.4	477
47	Microbial competition among anammox bacteria in nitrite-limited bioreactors. Water Research, 2017, 125, 249-258.	5.3	101
48	Target virus log10 reduction values determined for two reclaimed wastewater irrigation scenarios in Japan based on tolerable annual disease burden. Water Research, 2017, 125, 438-448.	5.3	20
49	Virulence and biodegradation potential of dynamic microbial communities associated with decaying Cladophora in Great Lakes. Science of the Total Environment, 2017, 574, 872-880.	3.9	22
50	Noviherbaspirillum denitrificans sp. nov., a denitrifying bacterium isolated from rice paddy soil and Noviherbaspirillum autotrophicum sp. nov., a denitrifying, facultatively autotrophic bacterium isolated from rice paddy soil and proposal to reclassify Herbaspirillum massiliense as Noviherbaspirillum massiliense comb. nov International Journal of Systematic and Evolutionary	0.8	43
51	Microbiology, 2017, 67, 1841-1848. Genome Sequence of <i>Enterobacter cloacae</i> Strain SENG-6, a Bacterium Producing Histo-Blood Group Antigen-Like Substances That Can Bind with Human Noroviruses. Genome Announcements, 2016, 4, .	0.8	0
52	EVIDENCE-BASED DETERMINATION OF THE HYGIENE STANDARD VALUE IN ENVIRONMENTAL WATER. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2016, 72, 40-49.	0.1	1
53	Denitrification and Nitrate-Dependent Fe(II) Oxidation in Various <i>Pseudogulbenkiania</i> Strains. Microbes and Environments, 2016, 31, 293-298.	0.7	38
54	Evaluation of virus reduction efficiency in wastewater treatment unit processes as a credit value in the multiple-barrier system for wastewater reclamation and reuse. Journal of Water and Health, 2016, 14, 879-889.	1.1	10

#	Article	IF	CITATIONS
55	Estimation of concentration ratio of indicator to pathogen-related gene in environmental water based on left-censored data. Journal of Water and Health, 2016, 14, 14-25.	1.1	7
56	Specific Single-Cell Isolation of <i>Escherichia coli</i> O157 from Environmental Water Samples by Using Flow Cytometry and Fluorescence-Activated Cell Sorting. Foodborne Pathogens and Disease, 2016, 13, 456-461.	0.8	7
57	Membrane fouling potentials and cellular properties of bacteria isolated from fouled membranes in a MBR treating municipal wastewater. Water Research, 2016, 100, 448-457.	5.3	69
58	Correlations between pathogen concentration and fecal indicator marker genes in beach environments. Science of the Total Environment, 2016, 573, 826-830.	3.9	41
59	Bacterial histo-blood group antigens contributing to genotype-dependent removal of human noroviruses with a microfiltration membrane. Water Research, 2016, 95, 383-391.	5.3	23
60	Source identification of nitrous oxide emission pathways from a single-stage nitritation-anammox granular reactor. Water Research, 2016, 102, 147-157.	5.3	106
61	Rapid and successful start-up of anammox process by immobilizing the minimal quantity of biomass in PVA-SA gel beads. Water Research, 2015, 79, 147-157.	5.3	152
62	Application of a Microfluidic Quantitative Polymerase Chain Reaction Technique To Monitor Bacterial Pathogens in Beach Water and Complex Environmental Matrices. Environmental Science and Technology Letters, 2015, 2, 347-351.	3.9	28
63	Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules. Bioresource Technology, 2015, 197, 15-22.	4.8	72
64	Identification of key nitrous oxide production pathways in aerobic partial nitrifying granules. Environmental Microbiology, 2014, 16, 3168-3180.	1.8	49
65	Microfluidic Quantitative PCR for Simultaneous Quantification of Multiple Viruses in Environmental Water Samples. Applied and Environmental Microbiology, 2014, 80, 7505-7511.	1.4	90
66	Inoculation with N2-generating denitrifier strains mitigates N2O emission from agricultural soil fertilized with poultry manure. Biology and Fertility of Soils, 2014, 50, 1001-1007.	2.3	46
67	The nitrogen cycle in cryoconites: naturally occurring nitrificationâ€denitrification granules on a glacier. Environmental Microbiology, 2014, 16, 3250-3262.	1.8	72
68	Water Quality Monitoring and Risk Assessment by Simultaneous Multipathogen Quantification. Environmental Science & Technology, 2014, 48, 4744-4749.	4.6	57
69	Chicken- and duck-associated Bacteroides–Prevotella genetic markers for detecting fecal contamination in environmental water. Applied Microbiology and Biotechnology, 2013, 97, 7427-7437.	1.7	40
70	Use of a genetically-engineered Escherichia coli strain as a sample process control for quantification of the host-specific bacterial genetic markers. Applied Microbiology and Biotechnology, 2013, 97, 9165-9173.	1.7	13
71	Source identification of nitrous oxide on autotrophic partial nitrification in a granular sludge reactor. Water Research, 2013, 47, 7078-7086.	5.3	62
72	Development and characterization of the partial nitrification aerobic granules in a sequencing batch airlift reactor. Bioresource Technology, 2013, 139, 285-291.	4.8	39

Satoshi Ishii

#	Article	IF	CITATIONS
73	Seasonal Transition of Active Bacterial and Archaeal Communities in Relation to Water Management in Paddy Soils. Microbes and Environments, 2013, 28, 370-380.	0.7	44
74	Nitrate-Dependent Ferrous Iron Oxidation by Anaerobic Ammonium Oxidation (Anammox) Bacteria. Applied and Environmental Microbiology, 2013, 79, 4087-4093.	1.4	160
75	Simultaneous Quantification of Multiple Food- and Waterborne Pathogens by Use of Microfluidic Quantitative PCR. Applied and Environmental Microbiology, 2013, 79, 2891-2898.	1.4	131
76	Identification and Phylogenetic Characterization of Cobalamin Biosynthetic Genes of <i>Ensifer adhaerens</i> . Microbes and Environments, 2013, 28, 153-155.	0.7	10
77	Complete Genome Sequence of the Denitrifying and N2O-Reducing Bacterium Azoarcus sp. Strain KH32C. Journal of Bacteriology, 2012, 194, 1255-1255.	1.0	29
78	Identification of Active Denitrifiers in Rice Paddy Soil by DNA- and RNA-Based Analyses. Microbes and Environments, 2012, 27, 456-461.	0.7	77
79	Advantages of functional single-cell isolation method over standard agar plate dilution method as a tool for studying denitrifying bacteria in rice paddy soil. AMB Express, 2012, 2, 50.	1.4	19
80	The population structure of Escherichia coli isolated from subtropical and temperate soils. Science of the Total Environment, 2012, 417-418, 273-279.	3.9	46
81	Identification and isolation of active N2O reducers in rice paddy soil. ISME Journal, 2011, 5, 1936-1945.	4.4	78
82	æ°´ç"°åœŸå£Œã§æ©Ÿèf½ã™ã,‹è"±çª'微生物ç¾ ë ®ç‰¹å®šãïN2O低æչåŒ−ãṣã®å^©ç"ïã®åīèf½æ€	§. Kag aku	Toœeibutsu,
83	Phylogenetic and Functional Diversity of Denitrifying Bacteria Isolated from Various Rice Paddy and Rice-Soybean Rotation Fields. Microbes and Environments, 2011, 26, 30-35.	0.7	69
84	Waterfowl Abundance Does Not Predict the Dominant Avian Source of Beach <i>Escherichia coli</i> . Journal of Environmental Quality, 2011, 40, 1924-1931.	1.0	10
85	Nitrogen Cycling in Rice Paddy Environments: Past Achievements and Future Challenges. Microbes and Environments, 2011, 26, 282-292.	0.7	180
86	Isolation of Oligotrophic Denitrifiers Carrying Previously Uncharacterized Functional Gene Sequences. Applied and Environmental Microbiology, 2011, 77, 338-342.	1.4	54
87	Complete Genome Sequence of the Denitrifying and N ₂ O-Reducing Bacterium Pseudogulbenkiania sp. Strain NH8B. Journal of Bacteriology, 2011, 193, 6395-6396.	1.0	15
88	Factors Controlling Long-Term Survival and Growth of Naturalized Escherichia coli Populations in Temperate Field Soils. Microbes and Environments, 2010, 25, 8-14.	0.7	58
89	Title is missing!. Kagaku To Seibutsu, 2010, 48, 666-668.	0.0	0
	la lation of functional single calls from any incoments using a mission manipulatory application to		

90Isolation of functional single cells from environments using a micromanipulator: application to
study denitrifying bacteria. Applied Microbiology and Biotechnology, 2010, 85, 1211-1217.1.771

#	Article	IF	CITATIONS
91	Single-cell analysis and isolation for microbiology and biotechnology: methods and applications. Applied Microbiology and Biotechnology, 2010, 86, 1281-1292.	1.7	97
92	Microbial populations in various paddy soils respond differently to denitrification-inducing conditions, albeit background bacterial populations are similar. Soil Science and Plant Nutrition, 2010, 56, 220-224.	0.8	14
93	nirK-Harboring Denitrifiers Are More Responsive to Denitrification- Inducing Conditions in Rice Paddy Soil Than nirS-Harboring Bacteria. Microbes and Environments, 2010, 25, 45-48.	0.7	85
94	Large scale analysis of virulence genes in Escherichia coli strains isolated from Avalon Bay, CA. Water Research, 2010, 44, 5463-5473.	5.3	55
95	Stable Isotope Probing as a Tool to Identify Active Microbial Populations in Soil. Radioisotopes, 2010, 59, 703-705.	0.1	0
96	<i>Escherichia coli</i> Populations in Great Lakes Waterfowl Exhibit Spatial Stability and Temporal Shifting. Applied and Environmental Microbiology, 2009, 75, 1546-1551.	1.4	16
97	Microbial Populations Responsive to Denitrification-Inducing Conditions in Rice Paddy Soil, as Revealed by Comparative 16S rRNA Gene Analysis. Applied and Environmental Microbiology, 2009, 75, 7070-7078.	1.4	94
98	Temporal shifts in diversity and quantity of nirS and nirK in a rice paddy field soil. Soil Biology and Biochemistry, 2009, 41, 2044-2051.	4.2	168
99	Applications of the repâ€PCR DNA fingerprinting technique to study microbial diversity, ecology and evolution. Environmental Microbiology, 2009, 11, 733-740.	1.8	116
100	Seasonal stability of Cladophora-associated Salmonella in Lake Michigan watersheds. Water Research, 2009, 43, 806-814.	5.3	80
101	Application of a clustering-based peak alignment algorithm to analyze various DNA fingerprinting data. Journal of Microbiological Methods, 2009, 78, 344-350.	0.7	18
102	Sources and Sinks of Escherichia coli in Benthic and Pelagic Fish. Journal of Great Lakes Research, 2008, 34, 228-234.	0.8	21
103	Escherichia coli in the Environment: Implications for Water Quality and Human Health. Microbes and Environments, 2008, 23, 101-108.	0.7	393
104	Identification of Novel Betaproteobacteria in a Succinate-Assimilating Population in Denitrifying Rice Paddy Soil by Using Stable Isotope Probing. Microbes and Environments, 2008, 23, 192-200.	0.7	72
105	Presence and Sources of Fecal Coliform Bacteria in Epilithic Periphyton Communities of Lake Superior. Applied and Environmental Microbiology, 2007, 73, 3771-3778.	1.4	99
106	Relationship between Phylogenetic Groups, Genotypic Clusters, and Virulence Gene Profiles of Escherichia coli Strains from Diverse Human and Animal Sources. Applied and Environmental Microbiology, 2007, 73, 5703-5710.	1.4	104
107	Population structure of Cladophora-borne Escherichia coli in nearshore water of Lake Michigan. Water Research, 2007, 41, 3649-3654.	5.3	50
108	Beach Sand and Sediments are Temporal Sinks and Sources ofEscherichia coliin Lake Superior. Environmental Science & Technology, 2007, 41, 2203-2209.	4.6	185

#	Article	IF	CITATIONS
109	Population structure, persistence, and seasonality of autochthonous Escherichia coli in temperate, coastal forest soil from a Great Lakes watershed. Environmental Microbiology, 2006, 8, 504-513.	1.8	181
110	Cladophora (Chlorophyta) spp. Harbor Human Bacterial Pathogens in Nearshore Water of Lake Michigan. Applied and Environmental Microbiology, 2006, 72, 4545-4553.	1.4	150
111	Presence and Growth of Naturalized Escherichia coli in Temperate Soils from Lake Superior Watersheds. Applied and Environmental Microbiology, 2006, 72, 612-621.	1.4	440
112	Rapid and reliable DNA extraction techniques from trypan-blue-stained mycorrhizal roots: comparison of two methods. Mycorrhiza, 2004, 14, 271-275.	1.3	17
113	Gonadal development and expression profiles of gonadotropin genes in wild sea conger, Ariosoma meeki. Fish Physiology and Biochemistry, 2003, 28, 95-96.	0.9	5
114	Involvement of a sperm aminopeptidase in fertilization of the sea urchin. Experientia, 1991, 47, 100-103.	1.2	6
115	Environmental Sources of Fecal Bacteria. , 0, , 93-110.		13