
Camélia Matei Ghimbeu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8904623/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Olive Mill by-Products Thermochemical Conversion via Hydrothermal Carbonization and Slow Pyrolysis: Detailed Comparison between the Generated Hydrochars and Biochars Characteristics. Processes, 2022, 10, 231.	1.3	13
2	The role of specific and active surface areas in optimizing hard carbon irreversible capacity loss in sodium ion batteries. Energy Advances, 2022, 1, 185-190.	1.4	11
3	Vegetal-Extracted Polyphenols as a Natural Hard Carbon Anode Source for Na-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 4774-4787.	2.5	6
4	Impact of the biomass precursor composition in the hard carbon properties and performance for application in a Na-ion battery. Fuel Processing Technology, 2022, 231, 107223.	3.7	13
5	Performance evaluation of electrochemical capacitors with activated carbon spheres as electrode material and aqueous electrolyte. Journal of Power Sources, 2022, 542, 231714.	4.0	4
6	Hard carbon derived from coconut shells, walnut shells, and corn silk biomass waste exhibiting high capacity for Na-ion batteries. Journal of Energy Chemistry, 2021, 58, 207-218.	7.1	89
7	Application of olive mill waste-based biochars in agriculture: Impact on soil properties, enzymatic activities and tomato growth. Science of the Total Environment, 2021, 755, 142531.	3.9	58
8	Link between Alkali Metals in Salt Templates and in Electrolytes for Improved Carbon-Based Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2021, 13, 2584-2599.	4.0	20
9	Hard carbon porosity revealed by the adsorption of multiple gas probe molecules (N ₂ , Ar,) Tj ETQq1	1	4 rgBT /Ove
10	Simulations of Ionic Liquids Confined in Surface-Functionalized Nanoporous Carbons: Implications for Energy Storage. ACS Applied Nano Materials, 2021, 4, 4007-4015.	2.4	12
11	Co ₃ O ₄ Nanoparticles Embedded in Mesoporous Carbon for Supercapacitor Applications. ACS Applied Nano Materials, 2021, 4, 5022-5037.	2.4	55
12	Laser-assisted synthesis of carbon coatings with cobalt oxide nanoparticles embedded in gradient of composition and sizes. Surface and Coatings Technology, 2021, 419, 127301.	2.2	10
13	Determination of methane, ethane and propane on activated carbons by experimental pressure swing adsorption method. Journal of Natural Gas Science and Engineering, 2021, 95, 104124.	2.1	3
14	Hard carbon key properties allow for the achievement of high Coulombic efficiency and high volumetric capacity in Na-ion batteries. Journal of Materials Chemistry A, 2021, 9, 1743-1758.	5.2	52
15	River driftwood pretreated via hydrothermal carbonization as a sustainable source of hard carbon for Na-ion battery anodes. Journal of Environmental Chemical Engineering, 2021, 9, 106604.	3.3	15
16	Impact of biomass inorganic impurities on hard carbon properties and performance in Na-ion batteries. Sustainable Materials and Technologies, 2020, 26, e00227.	1.7	25
17	Unraveling the Properties of Biomass-Derived Hard Carbons upon Thermal Treatment for a Practical Application in Na-Ion Batteries. Energies, 2020, 13, 3513.	1.6	30
18	Palladium nanoparticles embedded in mesoporous carbons as efficient, green and reusable catalysts for mild hydrogenations of nitroarenes. RSC Advances, 2020, 10, 36741-36750.	1.7	9

Camélia Matei Ghimbeu

#	Article	IF	CITATIONS
19	Potential for Production of Biochar-Based Fertilizers from Olive Mill Waste in Mediterranean Basin Countries: An Initial Assessment for Spain, Tunisia, and Greece. Sustainability, 2020, 12, 6081.	1.6	24
20	Thermal decomposition of a layered double hydroxide as a bottom up approach for the synthesis of metallic nanoparticles embedded in carbon structures. New Journal of Chemistry, 2020, 44, 16721-16732.	1.4	5
21	Olive mill wastewater: From a pollutant to green fuels, agricultural and water source and bio-fertilizer – Hydrothermal carbonization. Science of the Total Environment, 2020, 733, 139314.	3.9	58
22	Self-supported binder-free hard carbon electrodes for sodium-ion batteries: insights into their sodium storage mechanisms. Journal of Materials Chemistry A, 2020, 8, 5558-5571.	5.2	60
23	Electrochemical capacitors operating in aqueous electrolyte with volumetric characteristics improved by sustainable templating of electrode materials. Electrochimica Acta, 2020, 338, 135788.	2.6	20
24	Physico-chemical properties of hydrochars produced from raw olive pomace using olive mill wastewater as moisture source. Comptes Rendus Chimie, 2020, 23, 635-652.	0.2	5
25	Hydrochars production, characterization and application for wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 2020, 127, 109882.	8.2	122
26	Valorizing low cost and renewable lignin as hard carbon for Na-ion batteries: Impact of lignin grade. Carbon, 2019, 153, 634-647.	5.4	67
27	Influence of carbon characteristics on Sb/carbon nanocomposites formation and performances in Na-ion batteries. Materials Today Energy, 2019, 13, 221-232.	2.5	14
28	Mesoporous carbon supported ultrasmall palladium particles as highly active catalyst for Suzukiâ€Miyaura reaction. Applied Organometallic Chemistry, 2019, 33, e5104.	1.7	10
29	Diblock Copolymer Core–Shell Nanoparticles as Template for Mesoporous Carbons: Independent Tuning of Pore Size and Pore Wall Thickness. Langmuir, 2019, 35, 16324-16334.	1.6	9
30	Olive oil by-products : From harmful waste to interesting carbonaceous materials : Hydrothermal conversion of olive oil by-products into carbon rich chars. , 2019, , .		1
31	Comparative study of the CH4/CO2 adsorption selectivity of activated carbons for biogas upgrading. Journal of Environmental Chemical Engineering, 2019, 7, 103368.	3.3	36
32	Understanding ageing mechanisms of porous carbons in non-aqueous electrolytes for supercapacitors applications. Journal of Power Sources, 2019, 434, 226734.	4.0	19
33	Chitin and Chitosan—Structurally Related Precursors of Dissimilar Hard Carbons for Na-Ion Battery. ACS Applied Energy Materials, 2019, 2, 4841-4852.	2.5	36
34	Carbon microtubes derived from self-rolled chitosan acetate films and graphitized by joule heating. Journal of Materials Science, 2019, 54, 11345-11356.	1.7	5
35	Activated Carbon/Transition Metal (Ni, In, Cu) Hexacyanoferrate Nanocomposites for Cesium Adsorption. Materials, 2019, 12, 1253.	1.3	33

#	Article	IF	CITATIONS
37	Supercapacitors (electrochemical capacitors). , 2019, , 383-427.		6
38	Thermal Reduction of Graphene Oxide Mitigates Its In Vivo Genotoxicity Toward Xenopus laevis Tadpoles. Nanomaterials, 2019, 9, 584.	1.9	28
39	RAFT-photomediated PISA in dispersion: mechanism, optical properties and application in templated synthesis. Polymer Chemistry, 2019, 10, 2316-2326.	1.9	32
40	Eco-friendly synthesis of SiO2 nanoparticles confined in hard carbon: A promising material with unexpected mechanism for Li-ion batteries. Carbon, 2019, 143, 598-609.	5.4	47
41	Self-buffered pH at carbon surfaces in aqueous supercapacitors. Carbon, 2018, 129, 758-765.	5.4	56
42	Insights on the Na+ ion storage mechanism in hard carbon: Discrimination between the porosity, surface functional groups and defects. Nano Energy, 2018, 44, 327-335.	8.2	229
43	Hierarchical porous nitrogen-doped carbon beads derived from biosourced chitosan polymer. Microporous and Mesoporous Materials, 2018, 263, 42-52.	2.2	29
44	Optimization of Large Scale Produced Hard Carbon Performance in Na-Ion Batteries: Effect of Precursor, Temperature and Processing Conditions. Journal of the Electrochemical Society, 2018, 165, A4058-A4066.	1.3	37
45	CO2 and CH4 Adsorption Behavior of Biomass-Based Activated Carbons. Energies, 2018, 11, 3136.	1.6	28
46	Experimental Determination of the CH ₄ and CO ₂ Pure Gas Adsorption Isotherms on Different Activated Carbons. Journal of Chemical & Engineering Data, 2018, 63, 3027-3034.	1.0	14
47	Understanding the Sn Loading Impact on the Performance of Mesoporous Carbon/Snâ€Based Nanocomposites in Liâ€lon Batteries. ChemElectroChem, 2018, 5, 3249-3257.	1.7	12
48	Eco-Friendly Synthesis of Nitrogen-Doped Mesoporous Carbon for Supercapacitor Application. Journal of Carbon Research, 2018, 4, 20.	1.4	12
49	Reusable magnetic Pd _x Co _y nanoalloys confined in mesoporous carbons for green Suzuki–Miyaura reactions. RSC Advances, 2018, 8, 17176-17182.	1.7	13
50	Hard carbons derived from green phenolic resins for Na-ion batteries. Carbon, 2018, 139, 248-257.	5.4	131
51	Carbonaceous adsorbents derived from textile cotton waste for the removal of Alizarin S dye from aqueous effluent: kinetic and equilibrium studies. Environmental Science and Pollution Research, 2017, 24, 10041-10055.	2.7	55
52	Optimization of the synthesis of Pd-Au nanoalloys confined in mesoporous carbonaceous materials. Journal of Colloid and Interface Science, 2017, 505, 410-420.	5.0	9
53	Facile and sustainable synthesis of nitrogen-doped polymer and carbon porous spheres. Green Chemistry, 2017, 19, 2266-2274.	4.6	44
54	Hybrid extracellular matrix microspheres for development of complex multicellular architectures. RSC Advances, 2017, 7, 5528-5532.	1.7	4

#	Article	IF	CITATIONS
55	In-situ Pd–Pt nanoalloys growth in confined carbon spaces and their interactions with hydrogen. Nano Structures Nano Objects, 2017, 9, 1-12.	1.9	20
56	Synthesis of sulfur-doped porous carbons by soft and hard templating processes for CO 2 and H 2 adsorption. Microporous and Mesoporous Materials, 2017, 243, 135-146.	2.2	32
57	Exploring the hydrogen absorption into Pd–Ir nanoalloys supported on carbon. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	4
58	Matrix-Assisted Pulsed Laser Evaporation: A novel approach to design mesoporous carbon films. Carbon, 2017, 122, 484-495.	5.4	11
59	Hydrogen absorption properties of carbon supported Pd–Ni nanoalloys. International Journal of Hydrogen Energy, 2017, 42, 1004-1011.	3.8	11
60	Magnetism as indirect tool for carbon content assessment in nickel nanoparticles. Journal of Applied Physics, 2017, 122, 213902.	1.1	2
61	Green Carbon Composite-Derived Polymer Resin and Waste Cotton Fibers for the Removal of Alizarin Red S Dye. Energies, 2017, 10, 1321.	1.6	18
62	Experimental Challenges in Studying Hydrogen Absorption in Ultrasmall Metal Nanoparticles. Frontiers in Energy Research, 2016, 4, .	1.2	13
63	Recent Progress in Design of Biomass-Derived Hard Carbons for Sodium Ion Batteries. Journal of Carbon Research, 2016, 2, 24.	1.4	53
64	Direct synthesis of graphitic mesoporous carbon from green phenolic resins exposed to subsequent UV and IR laser irradiations. Scientific Reports, 2016, 6, 39617.	1.6	26
65	Facile and rapid one-pot microwave-assisted synthesis of Pd-Ni magnetic nanoalloys confined in mesoporous carbons. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	18
66	Valorization of cotton waste generated from the Tunisian textile industry through the production of adsorbents carbonaceous materials. , 2016, , .		0
67	Correlation Between Microstructure and Na Storage Behavior in Hard Carbon. Advanced Energy Materials, 2016, 6, 1501588.	10.2	364
68	Relationship between the carbon nano-onions (CNOs) surface chemistry/defects and their capacitance in aqueous and organic electrolytes. Carbon, 2016, 105, 628-637.	5.4	84
69	Synthesis and stability of Pd–Rh nanoalloys with fully tunable particle size and composition. Nano Structures Nano Objects, 2016, 7, 92-100.	1.9	11
70	Insights on the synthesis mechanism of green phenolic resin derived porous carbons via a salt-soft templating approach. Carbon, 2016, 109, 227-238.	5.4	55
71	Composition and size dependence of hydrogen interaction with carbon supported bulk-immiscible Pd–Rh nanoalloys. Nanotechnology, 2016, 27, 465401.	1.3	17
72	Realistic molecular model of kerogen's nanostructure. Nature Materials, 2016, 15, 576-582.	13.3	300

Camélia Matei Ghimbeu

#	Article	IF	CITATIONS
73	One-pot synthesis of tailored Pd–Co nanoalloy particles confined in mesoporous carbon. Microporous and Mesoporous Materials, 2016, 223, 79-88.	2.2	14
74	Synthesis of Li 2 FeSiO 4 /carbon nano-composites by impregnation method. Journal of Power Sources, 2015, 284, 574-581.	4.0	20
75	Ultrasmall MgH ₂ Nanoparticles Embedded in an Ordered Microporous Carbon Exhibiting Rapid Hydrogen Sorption Kinetics. Journal of Physical Chemistry C, 2015, 119, 18091-18098.	1.5	70
76	Carbon–Iron Microfibrous Material Produced by Thermal Treatment of Self-rolled Poly(4-vinyl) Tj ETQq0 0 0 rgBT 881-887.	- /Overlocl 5.6	۱0 Tf 50 62 5
77	Activation of few layer graphene by μW-assisted oxidation in water via formation of nanoballs – Support for platinum nanoparticles. Journal of Colloid and Interface Science, 2015, 451, 221-230.	5.0	13
78	One-pot laser-assisted synthesis of porous carbon with embedded magnetic cobalt nanoparticles. Nanoscale, 2015, 7, 10111-10122.	2.8	22
79	Insights on the reactivity of ordered porous carbons exposed to different fluorinating agents and conditions. Carbon, 2015, 84, 567-583.	5.4	22
80	Exceptionally highly performing Na-ion battery anode using crystalline SnO ₂ nanoparticles confined in mesoporous carbon. Journal of Materials Chemistry A, 2015, 3, 11960-11969.	5.2	68
81	Hydrogen Storage Properties of Nanoconfined LiBH ₄ –Mg ₂ NiH ₄ Reactive Hydride Composites. Journal of Physical Chemistry C, 2015, 119, 5819-5826.	1.5	42
82	Hydrogen sorption properties of Pd–Co nanoalloys embedded into mesoporous carbons. Nanoscale, 2015, 7, 15469-15476.	2.8	19
83	"Light-assisted evaporation induced self-assembly― an efficient approach toward ordered carbon materials. RSC Advances, 2015, 5, 2861-2868.	1.7	17
84	Activated carbon prepared by physical activation of olive stones for the removal of NO2 at ambient temperature. Comptes Rendus Chimie, 2015, 18, 63-74.	0.2	103
85	Template-derived high surface area λ-MnO2 for supercapacitor applications. Journal of Applied Electrochemistry, 2014, 44, 123-132.	1.5	26
86	Influence of electrolyte ion–solvent interactions on the performances of supercapacitors porous carbon electrodes. Journal of Power Sources, 2014, 263, 130-140.	4.0	44
87	Confined Ultrasmall SnO ₂ Particles in Micro/Mesoporous Carbon as an Extremely Long Cycleâ€Life Anode Material for Liâ€Ion Batteries. Advanced Energy Materials, 2014, 4, 1400025.	10.2	140
88	Electrical Transport in "Few-Layer Graphene―Film Prepared by the Hot-Spray Technique: The Effect of Thermal Treatment. Journal of Physical Chemistry C, 2014, 118, 873-880.	1.5	6
89	Catalyst-free soft-template synthesis of ordered mesoporous carbon tailored using phloroglucinol/glyoxylic acid environmentally friendly precursors. Green Chemistry, 2014, 16, 3079.	4.6	74
90	High cycleability nano-GeO2/mesoporous carbon composite as enhanced energy storage anode material in Li-ion batteries. Journal of Power Sources, 2014, 269, 755-759.	4.0	52

#	Article	IF	CITATIONS
91	One-pot synthesis of LiFePO 4 –carbon mesoporous composites for Li-ion batteries. Microporous and Mesoporous Materials, 2014, 198, 175-184.	2.2	22
92	Controlled synthesis of NiCo nanoalloys embedded in ordered porous carbon by a novel soft-template strategy. Carbon, 2014, 67, 260-272.	5.4	44
93	Influence of Graphite Characteristics on the Electrochemical Performance in Alkylcarbonate LiTFSI Electrolyte for Li-Ion Capacitors and Li-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A1907-A1915.	1.3	34
94	Hydrogen storage in hybrid nanostructured carbon/palladium materials: Influence of particle size and surface chemistry. International Journal of Hydrogen Energy, 2013, 38, 952-965.	3.8	87
95	Tunable synthesis of (Mg–Ni)-based hydrides nanoconfined in templated carbon studied by in situ synchrotron diffraction. Nano Energy, 2013, 2, 12-20.	8.2	61
96	Photoassisted synthesis of manganese oxide nanostructures using visible light at room temperature. Green Chemistry, 2013, 15, 2191.	4.6	25
97	Crystalline vanadium nitride ultra-thin films obtained at room temperature by pulsed laser deposition. Surface and Coatings Technology, 2012, 211, 158-162.	2.2	16
98	Physicochemical characterization of vesicles systems formed in mixtures of protic ionic liquids and water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 395, 190-198.	2.3	13
99	Understanding the mechanism of hydrogen uptake at low pressure in carbon/palladium nanostructured composites. Journal of Materials Chemistry, 2011, 21, 17765.	6.7	50
100	Microporous carbon adsorbents with high CO2 capacities for industrial applications. Physical Chemistry Chemical Physics, 2011, 13, 16063.	1.3	53
101	Vanadium nitride/carbon nanotube nanocomposites as electrodes for supercapacitors. Journal of Materials Chemistry, 2011, 21, 13268.	6.7	167
102	A TPD-MS study of the adsorption of ethanol/cyclohexane mixture on activated carbons. Adsorption, 2011, 17, 227-233.	1.4	26
103	Carbon/λ-MnO2 composites for supercapacitor electrodes. Journal of Solid State Chemistry, 2010, 183, 969-974.	1.4	55
104	The Influence of Surface Chemistry and Pore Size on the Adsorption of Proteins on Nanostructured Carbon Materials. Advanced Functional Materials, 2010, 20, 2489-2499.	7.8	30
105	Detection of H2S, SO2, and NO2 using electrostatic sprayed tungsten oxide films. Materials Science in Semiconductor Processing, 2010, 13, 1-8.	1.9	39
106	Influence of Surface Chemistry on the Adsorption of Oxygenated Hydrocarbons on Activated Carbons. Langmuir, 2010, 26, 18824-18833.	1.6	43
107	Electrosprayed Metal Oxide Semiconductor Films for Sensitive and Selective Detection of Hydrogen Sulfide. Sensors, 2009, 9, 9122-9132.	2.1	27
108	Detection of pollutant gases using electrostatic sprayed indium oxide and tin-doped indium oxide. Materials Chemistry and Physics, 2009, 114, 933-938.	2.0	12

#	Article	IF	CITATIONS
109	Electrostatic sprayed SnO2 and Cu-doped SnO2 films for H2S detection. Sensors and Actuators B: Chemical, 2008, 133, 694-698.	4.0	86
110	Porous indium oxide thin films deposited by electrostatic spray deposition technique. Ceramics International, 2008, 34, 95-100.	2.3	25
111	Tungsten trioxide thin films prepared by electrostatic spray deposition technique. Thin Solid Films, 2007, 515, 5498-5504.	0.8	21
112	Electrostatic spray deposited zinc oxide films for gas sensor applications. Applied Surface Science, 2007, 253, 7483-7489.	3.1	124
113	Preparation and characterization of SnO2 and Cu-doped SnO2 thin films using electrostatic spray deposition (ESD). Journal of the European Ceramic Society, 2007, 27, 207-213.	2.8	51