
Mohammed El-Rafie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8904577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydrate Polymers, 2013, 96, 403-410.	5.1	279
2	Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydrate Polymers, 2010, 82, 933-941.	5.1	241
3	Highly effective antibacterial textiles containing green synthesized silver nanoparticles. Carbohydrate Polymers, 2011, 86, 936-940.	5.1	225
4	Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. International Journal of Biological Macromolecules, 2014, 65, 509-515.	3.6	222
5	Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohydrate Polymers, 2010, 80, 779-782.	5.1	189
6	Environmental synthesis of silver nanoparticles using hydroxypropyl starch and their characterization. Carbohydrate Polymers, 2011, 86, 630-635.	5.1	152
7	Polyacrylamide/guar gum graft copolymer for preparation of silver nanoparticles. Carbohydrate Polymers, 2011, 85, 692-697.	5.1	133
8	Bio-synthesis and applications of silver nanoparticles onto cotton fabrics. Carbohydrate Polymers, 2012, 90, 915-920.	5.1	129
9	Antibacterial Activities and UV Protection of the in Situ Synthesized Titanium Oxide Nanoparticles on Cotton Fabrics. Industrial & Engineering Chemistry Research, 2016, 55, 2661-2668.	1.8	129
10	Characterization of nanosilver coated cotton fabrics and evaluation of its antibacterial efficacy. Carbohydrate Polymers, 2014, 107, 174-181.	5.1	123
11	Surface modification of cotton fabrics for antibacterial application by coating with AgNPs–alginate composite. Carbohydrate Polymers, 2014, 108, 145-152.	5.1	122
12	Ultra-Fine Characteristics of Starch Nanoparticles Prepared Using Native Starch With and Without Surfactant. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 515-524.	1.9	101
13	Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles. International Journal of Biological Macromolecules, 2015, 81, 718-729.	3.6	93
14	Facile size-regulated synthesis of silver nanoparticles using pectin. Carbohydrate Polymers, 2014, 111, 971-978.	5.1	76
15	Graft copolymerization of vinyl monomers on modified cottons—I. European Polymer Journal, 1970, 6, 1575-1586.	2.6	63
16	Nanostructural Features of Silver Nanoparticles Powder Synthesized through Concurrent Formation of the Nanosized Particles of Both Starch and Silver. Journal of Nanotechnology, 2013, 2013, 1-10.	1.5	57
17	Room temperature synthesis of metallic nanosilver using acacia to impart durable biocidal effect on cotton fabrics. Fibers and Polymers, 2015, 16, 1676-1687.	1.1	56
18	Alginate mediate for synthesis controllable sized AgNPs. Carbohydrate Polymers, 2014, 111, 10-17.	5.1	55

Mohammed El-Rafie

#	Article	IF	CITATIONS
19	Utilization of hydroxypropyl cellulose and poly(acrylic acid)-hydroxypropyl cellulose composite as thickeners for textile printing. Carbohydrate Polymers, 2008, 74, 938-941.	5.1	49
20	Facile Precursor for Synthesis of Silver Nanoparticles Using Alkali Treated Maize Starch. International Scholarly Research Notices, 2014, 2014, 1-12.	0.9	32
21	Ultraâ€microstructural features of perborate oxidized starch. Journal of Applied Polymer Science, 2014, 131, .	1.3	29
22	Graft copolymerization of vinyl monomers onto modified cotton. IX. Hydrogen peroxide–thiourea dioxide redox system induced grafting of 2-methyl-5-vinylpyridine onto oxidized celluloses. Journal of Applied Polymer Science, 1978, 22, 1853-1866.	1.3	27
23	Graft copolymerization of vinyl monomers onto modified cottons. VIII. Dimethylaniline–benzyl chloride-induced grafting of methyl methacrylate onto partially carboxymethylated cotton. Journal of Applied Polymer Science, 1977, 21, 1901-1910.	1.3	20
24	Surface Characterization of Differently Pretreated Flax Fibers and Their Application in Fiber-Reinforced Composites. Polymer-Plastics Technology and Engineering, 2007, 47, 58-65.	1.9	19
25	Single Bath Full Bleaching of Flax Fibers Using an Activated Sodium Chlorite/Hexamethylene Tetramine System. Journal of Natural Fibers, 2005, 2, 49-67.	1.7	16
26	Green Synthesis of Hydroxyethyl Cellulose-Stabilized Silver Nanoparticles. Journal of Polymers, 2013, 2013, 1-11.	0.9	16
27	Pentavalent vanadium ion-induced grafting of methyl methacrylate onto cotton cellulose. Journal of Applied Polymer Science, 1981, 26, 149-157.	1.3	15
28	Behavior of chemically modified cellulose towards dyeing. IV. Dyeability of poly(methyl vinyl) Tj ETQq0 0 0 rgBT / Applied Polymer Science, 1979, 23, 3061-3069.	Overlock I 1.3	10 Tf 50 387 ⁻ 14
29	Pentavalent vanadium ion–cellulose thiocarbonate redox-system induced grafting of methyl methacrylate and other vinyl monomers onto cotton fabric. Journal of Applied Polymer Science, 1993, 50, 2099-2104.	1.3	14
30	Redox-initiated graft copolymerization onto wool with thiourea as reductant. IV. Grafting of vinyl sulfone dyes onto wool using thiourea–H2O2 redox system. Journal of Applied Polymer Science, 1978, 22, 2253-2264.	1.3	11
31	Antibacterial and anti-inflammatory finishing of cotton by microencapsulation using three marine organisms. International Journal of Biological Macromolecules, 2016, 86, 59-64.	3.6	11
32	Grafting of nylon 66 with methyl methacrylate using dimethylaniline–benzyl chloride–acetic acid initiating system. Journal of Applied Polymer Science, 1977, 21, 1965-1970.	1.3	9
33	Effect of short thermal treatment on cotton degradation. Journal of Applied Polymer Science, 1979, 23, 453-462.	1.3	9
34	Behavior of chemically modified cottons towards thermal treatment. II. Cyanoethylated cotton. Journal of Applied Polymer Science, 1983, 28, 311-326.	1.3	8
35	Dyeing of chemically modified cellulose. IV. Dyeing of oxidized celluloses with some reactive and direct dyes. Journal of Applied Polymer Science, 1979, 24, 385-394.	1.3	6
36	Graft polymerization of methyl methacrylate onto wool using dimethylaniline/copper(II) system. Journal of Applied Polymer Science, 1982, 27, 519-526.	1.3	4