Jun Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8903863/publications.pdf

Version: 2024-02-01

331259 288905 1,792 41 21 40 citations h-index g-index papers 41 41 41 1990 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A review of China's municipal solid waste (MSW) and comparison with international regions: Management and technologies in treatment and resource utilization. Journal of Cleaner Production, 2021, 293, 126144.	4.6	289
2	Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Research, 2016, 9, 1813-1822.	5.8	224
3	Efficient dehydration of fructose to 5-hydroxymethylfurfural over sulfonated carbon sphere solid acid catalysts. Catalysis Today, 2016, 264, 123-130.	2.2	124
4	Fe-, Ti-, Zr- and Al-pillared clays for efficient catalytic pyrolysis of mixed plastics. Chemical Engineering Journal, 2017, 317, 800-809.	6.6	112
5	Multiscale characteristics dynamics of hydrochar from hydrothermal conversion of sewage sludge under sub- and near-critical water. Bioresource Technology, 2016, 211, 486-493.	4.8	94
6	Conventional and New Materials for Selective Catalytic Reduction (SCR) of NO _{<i>x</i>} . ChemCatChem, 2018, 10, 1499-1511.	1.8	83
7	Nanobelt-arrayed vanadium oxide hierarchical microspheres as catalysts for selective oxidation of 5-hydroxymethylfurfural toward 2,5-diformylfuran. Applied Catalysis B: Environmental, 2017, 207, 358-365.	10.8	67
8	MOF-derived nickel and cobalt metal nanoparticles in a N-doped coral shaped carbon matrix of coconut leaf sheath origin for high performance supercapacitors and OER catalysis. Electrochimica Acta, 2018, 265, 336-347.	2.6	64
9	Bifunctional Sulfonated MoO ₃ â€"ZrO ₂ Binary Oxide Catalysts for the One-Step Synthesis of 2,5-Diformylfuran from Fructose. ACS Sustainable Chemistry and Engineering, 2018, 6, 2976-2982.	3.2	57
10	Sulfur-doped g-C ₃ N ₄ for efficient photocatalytic CO ₂ reduction: insights by experiment and first-principles calculations. Catalysis Science and Technology, 2021, 11, 1725-1736.	2.1	51
11	MoO ₃ -Containing Protonated Nitrogen Doped Carbon as a Bifunctional Catalyst for One-Step Synthesis of 2,5-Diformylfuran from Fructose. ACS Sustainable Chemistry and Engineering, 2018, 6, 284-291.	3.2	48
12	Vanadium-embedded mesoporous carbon microspheres as effective catalysts for selective aerobic oxidation of 5-hydroxymethyl-2-furfural into 2, 5-diformylfuran. Applied Catalysis A: General, 2018, 568, 16-22.	2.2	46
13	Crâ€MILâ€101â€Encapsulated Keggin Phosphomolybdic Acid as a Catalyst for the Oneâ€Pot Synthesis of 2,5â€Diformylfuran from Fructose. ChemCatChem, 2017, 9, 1187-1191.	1.8	42
14	Ultra-effective integrated technologies for water disinfection with a novel OD-2D-3D nanostructured rGO-AgNP/Bi2Fe4O9 composite. Applied Catalysis B: Environmental, 2018, 227, 548-556.	10.8	36
15	Banana peel biochar with nanoflake-assembled structure for cross contamination treatment in water: Interaction behaviors between lead and tetracycline. Chemical Engineering Journal, 2021, 420, 129807.	6.6	35
16	Bifunctional carbon nanoplatelets as metal-free catalysts for direct conversion of fructose to 2,5-diformylfuran. Catalysis Science and Technology, 2020, 10, 4179-4183.	2.1	33
17	One-Step Approach to 2,5-Diformylfuran from Fructose over Molybdenum Oxides Supported on Carbon Spheres. ACS Sustainable Chemistry and Engineering, 2019, 7, 315-323.	3.2	27
18	Influence of catalyst and solvent on the hydrothermal liquefaction of woody biomass. Bioresource Technology, 2022, 346, 126354.	4.8	26

#	Article	IF	CITATIONS
19	Synthesis of 3D mesoporous samarium oxide hydrangea microspheres for enzyme-free sensor of hydrogen peroxide. Electrochimica Acta, 2016, 208, 231-237.	2.6	25
20	Mechanistic and kinetic studies on biodiesel production catalyzed by an efficient pyridinium based ionic liquid. Green Chemistry, 2015, 17, 4271-4280.	4.6	24
21	Atomic-thin hexagonal CuCo nanocrystals with d-band tuning for CO ₂ reduction. Journal of Materials Chemistry A, 2021, 9, 7496-7502.	5.2	24
22	An overview of nanomaterial-based novel disinfection technologies for harmful microorganisms: Mechanism, synthesis, devices and application. Science of the Total Environment, 2022, 837, 155720.	3.9	24
23	Carboxymethyl chitosan-poly(amidoamine) dendrimer core–shell nanoparticles for intracellular lysozyme delivery. Carbohydrate Polymers, 2013, 98, 1326-1334.	5.1	23
24	Ultrathin CuNi Nanosheets for CO ₂ Reduction and O ₂ Reduction Reaction in Fuel Cells., 2021, 3, 1143-1150.		23
25	Recent advances of lignin valorization techniques toward sustainable aromatics and potential benchmarks to fossil refinery products. Bioresource Technology, 2022, 346, 126419.	4.8	22
26	Optimization of water replacement during leachate recirculation for two-phase food waste anaerobic digestion system with off-gas diversion. Bioresource Technology, 2021, 335, 125234.	4.8	21
27	Hydrothermally driven three-dimensional evolution of mesoporous hierarchical europium oxide hydrangea microspheres for non-enzymatic sensors of hydrogen peroxide detection. Environmental Science: Nano, 2016, 3, 701-706.	2.2	15
28	Understanding the role of hydrogen bonding in BrÃ,nsted acidic ionic liquid-catalyzed transesterification: a combined theoretical and experimental investigation. Physical Chemistry Chemical Physics, 2016, 18, 32723-32734.	1.3	14
29	A Coconut Leaf Sheath Derived Graphitized Nâ€Doped Carbon Network for Highâ€Performance Supercapacitors. ChemElectroChem, 2018, 5, 284-291.	1.7	14
30	Humic Substances Derived From Biomass Waste During Aerobic Composting and Hydrothermal Treatment: A Review. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	14
31	Small Size Rh Nanoparticles in Micelle Nanostructure by Ionic Liquid/CTAB for Acceptorless Dehydrogenation of Alcohols Only in Pure Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 2056-2060.	3.2	13
32	Catalytic Hydrodeoxygenation of Guaiacol to Cyclohexanol over Bimetallic NiMo-MOF-Derived Catalysts. Catalysts, 2022, 12, 371.	1.6	13
33	Effect of Coordination Environment Surrounding a Single Pt Site on the Liquid-Phase Aerobic Oxidation of 5-Hydroxymethylfurfural. ACS Applied Materials & Interfaces, 2021, 13, 48582-48594.	4.0	12
34	Hydroxyapatite-based catalysts derived from food waste digestate for efficient glucose isomerization to fructose. Green Synthesis and Catalysis, 2021, 2, 356-361.	3.7	9
35	Controlled Synthesis of 3D Nanoplateâ€Assembled La ₂ O ₃ Hierarchical Microspheres for Enzymeâ€Free Detection of Hydrogen Peroxide. Advanced Materials Interfaces, 2016, 3, 1500833.	1.9	8
36	Hierarchical Gadolinium Oxide Microspheres for Enzymeless Electroâ€biosensors in Hydrogen Peroxide Dynamic Detection. ChemElectroChem, 2017, 4, 272-277.	1.7	8

#	Article	IF	CITATIONS
37	Effects of hydration parameters on chemical properties of biocrudes based on machine learning and experiments. Bioresource Technology, 2022, 350, 126923.	4.8	8
38	Preparation of Mesoporous Dysprosium Oxide for Dynamic Hydrogen Peroxide Detection without Enzymes. ChemElectroChem, 2017, 4, 96-101.	1.7	7
39	Supermagnetic Mn-substituted ZnFe ₂ O ₄ with AB-site hybridization for the ultra-effective catalytic degradation of azoxystrobin. Catalysis Science and Technology, 2022, 12, 3137-3147.	2.1	5
40	Boosting the performance by the water solvation shell with hydrogen bonds on protonic ionic liquids: insights into the acid catalysis of the glycosidic bond. Catalysis Science and Technology, 2021, 11, 3527-3538.	2.1	4
41	MgO/Carbon nanocomposites synthesized in molten salts for catalytic isomerization of glucose to fructose in aqueous media. Green Chemical Engineering, 2021, , .	3.3	4