Hiroshi Mizumoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8903855/publications.pdf

Version: 2024-02-01

		1040056	996975
17	245	9	15
papers	citations	h-index	g-index
18	18	18	330
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Normothermic machine perfusion system satisfying oxygen demand of liver could maintain liver function more than subnormothermic machine perfusion. Journal of Bioscience and Bioengineering, 2021, 131, 107-113.	2.2	4
2	A bioartificial liver device based on three-dimensional culture of genetically engineered hepatoma cells using hollow fibers. Cytotechnology, 2020, 72, 227-237.	1.6	3
3	Expansion and differentiation of human iPS cells in a three-dimensional culture using hollow fibers and separation of the specific population by magnetic-activated cell sorting. Journal of Bioscience and Bioengineering, 2019, 128, 480-486.	2.2	5
4	Evaluation of hollow fiber culture for large-scale production of mouse embryonic stem cell-derived hematopoietic stem cells. Cytotechnology, 2018, 70, 975-982.	1.6	1
5	<i>In vitro</i> and <i>ex vivo</i> Functional Evaluation of a Hollow Fiber-type Bioartificial Liver Module Containing ES Cell-derived Hepatocyte-like Cells. Advanced Biomedical Engineering, 2018, 7, 18-27.	0.6	3
6	Fabrication of a fiber-type hepatic tissue by bottom-up method using multilayer spheroids. Journal of Bioscience and Bioengineering, 2017, 123, 739-747.	2.2	12
7	Alleviating liver failure conditions using an integrated hybrid cryogel based cellular bioreactor as a bioartificial liver support. Scientific Reports, 2017, 7, 40323.	3.3	13
8	Formation of three-dimensional hepatic tissue by the bottom-up method using spheroids. Journal of Bioscience and Bioengineering, 2016, 122, 213-218.	2.2	24
9	Evaluation of a Hybrid Artificial Liver Module Based on a Spheroid Culture System of Embryonic Stem Cell-Derived Hepatic Cells. Cell Transplantation, 2012, 21, 421-428.	2.5	14
10	Hollow Fiber Bioreactor Perfusion Culture System for Magnetic Force-Based Skeletal Muscle Tissue Engineering. Journal of Chemical Engineering of Japan, 2012, 45, 348-354.	0.6	16
11	An evaluation of the utility of the hepatic differentiation method using hollow fiber/organoid culture for the development of a hybrid artificial liver device. Biochemical Engineering Journal, 2011, 56, 69-74.	3.6	7
12	In vitro reconstruction of a three-dimensional mouse hematopoietic microenvironment in the pore of polyurethane foam. Cytotechnology, 2010, 62, 531-537.	1.6	14
13	A New Culture Technique for Hepatocyte Organoid Formation and Long-Term Maintenance of Liver-Specific Functions. Tissue Engineering - Part C: Methods, 2008, 14, 167-175.	2.1	29
14	Development of a hybrid artificial liver using polyurethane foam/hepatocyte spheroid for clinical trial. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2002, 2002.14, 25-26.	0.0	0
15	Development of a hybrid artificial liver using hollow fiber/hepatocyte organoids for treatment of chronic liver failure. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2002, 2002.14, 27-28.	0.0	O
16	The formation of a spheroid of primary hepatocytes and the expression of liver-specific functions depend on the characteristics of polyurethane foam. Journal of Artificial Organs, 1998, 1, 83-88.	0.9	16
17	Formation of a spherical multicellular aggregate (spheroid) of animal cells in the pores of polyurethane foam as a cell culture substratum and its application to a hybrid artificial liver. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 765-778.	3 . 5	84