
Paul A. Webley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8903554/publications.pdf

Version: 2024-02-01

DAILL A MARIEV

#	Article	IF	CITATIONS
1	Carbon capture and storage (CCS): the way forward. Energy and Environmental Science, 2018, 11, 1062-1176.	15.6	2,378
2	Extraction of oil from microalgae for biodiesel production: A review. Biotechnology Advances, 2012, 30, 709-732.	6.0	825
3	Oil extraction from microalgae for biodiesel production. Bioresource Technology, 2011, 102, 178-185.	4.8	565
4	CO2 capture by adsorption: Materials and process development. International Journal of Greenhouse Gas Control, 2007, 1, 11-18.	2.3	363
5	Discriminative Separation of Gases by a "Molecular Trapdoor―Mechanism in Chabazite Zeolites. Journal of the American Chemical Society, 2012, 134, 19246-19253.	6.6	321
6	General and Controllable Synthesis of Novel Mesoporous Magnetic Iron Oxide@Carbon Encapsulates for Efficient Arsenic Removal. Advanced Materials, 2012, 24, 485-491.	11.1	312
7	Highly Specific Enrichment of Glycopeptides Using Boronic Acid-Functionalized Mesoporous Silica. Analytical Chemistry, 2009, 81, 503-508.	3.2	287
8	Microalgal cell disruption for biofuel development. Applied Energy, 2012, 91, 116-121.	5.1	278
9	Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeoliteÂ13X. Adsorption, 2008, 14, 415-422.	1.4	276
10	Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture. Microporous and Mesoporous Materials, 2008, 111, 478-487.	2.2	260
11	Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas. Energy Conversion and Management, 2008, 49, 346-356.	4.4	244
12	Structured adsorbents in gas separation processes. Separation and Purification Technology, 2010, 70, 243-256.	3.9	213
13	Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture. Journal of Membrane Science, 2019, 572, 38-60.	4.1	210
14	Ordered Mesoporous Platinum@Graphitic Carbon Embedded Nanophase as a Highly Active, Stable, and Methanol-Tolerant Oxygen Reduction Electrocatalyst. Journal of the American Chemical Society, 2012, 134, 2236-2245.	6.6	208
15	Facile Synthesis of Hierarchically Porous Carbons from Dual Colloidal Crystal/Block Copolymer Template Approach. Chemistry of Materials, 2007, 19, 3271-3277.	3.2	207
16	Comprehensive Study of Pore Evolution, Mesostructural Stability, and Simultaneous Surface Functionalization of Ordered Mesoporous Carbon (FDU-15) by Wet Oxidation as a Promising Adsorbent. Langmuir, 2010, 26, 10277-10286.	1.6	203
17	Capture of CO2 from flue gas streams with zeolite 13X byÂvacuum-pressure swing adsorption. Adsorption, 2008, 14, 575-582.	1.4	199
18	One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. Chemical Communications, 2008, , 2641.	2.2	177

#	Article	IF	CITATIONS
19	Preparation of activated carbons from corncob with large specific surface area by a variety of chemical activators and their application in gas storage. Chemical Engineering Journal, 2010, 162, 883-892.	6.6	173
20	Adsorption technology for CO2 separation and capture: a perspective. Adsorption, 2014, 20, 225-231.	1.4	173
21	Post-enrichment of nitrogen in soft-templated ordered mesoporous carbon materials for highly efficient phenol removal and CO2 capture. Journal of Materials Chemistry, 2012, 22, 11379.	6.7	154
22	CO ₂ Capture by Temperature Swing Adsorption: Use of Hot CO ₂ -Rich Gas for Regeneration. Industrial & amp; Engineering Chemistry Research, 2016, 55, 703-713.	1.8	153
23	Optimum structured adsorbents for gas separation processes. Chemical Engineering Science, 2009, 64, 5182-5191.	1.9	150
24	Ordered Mesoporous Crystalline γ-Al ₂ O ₃ with Variable Architecture and Porosity from a Single Hard Template. Journal of the American Chemical Society, 2010, 132, 12042-12050.	6.6	141
25	Oxidation kinetics of ammonia and ammonia-methanol mixtures in supercritical water in the temperature range 530-700.degree.C at 246 bar. Industrial & Engineering Chemistry Research, 1991, 30, 1745-1754.	1.8	139
26	Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel. Journal of Membrane Science, 2011, 385-386, 187-193.	4.1	139
27	Critical review of kinetic data for the oxidation of methanol in supercritical water. Journal of Supercritical Fluids, 2005, 34, 249-286.	1.6	138
28	Fundamental kinetics of methane oxidation in supercritical water. Energy & Fuels, 1991, 5, 411-419.	2.5	137
29	Advances in carbon capture, utilization and storage. Applied Energy, 2020, 278, 115627.	5.1	135
30	A new simplified pressure/vacuum swing adsorption model for rapid adsorbent screening for CO2 capture applications. International Journal of Greenhouse Gas Control, 2013, 15, 16-31.	2.3	133
31	Porous platinum nanowire arrays for direct ethanolfuel cell applications. Chemical Communications, 2009, , 195-197.	2.2	131
32	A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization. Water Research, 2018, 131, 100-109.	5.3	127
33	Advanced adsorbents based on MgO and K2CO3 for capture of CO2 at elevated temperatures. International Journal of Greenhouse Gas Control, 2011, 5, 634-639.	2.3	126
34	Continuous assembly of a polymer on a metal–organic framework (CAP on MOF): a 30 nm thick polymeric gas separation membrane. Energy and Environmental Science, 2018, 11, 544-550.	15.6	125
35	Mechanical cell disruption for lipid extraction from microalgal biomass. Bioresource Technology, 2013, 140, 53-63.	4.8	121
36	Ultrathin Metal–Organic Framework Nanosheets as a Gutter Layer for Flexible Composite Gas Separation Membranes. ACS Nano, 2018, 12, 11591-11599.	7.3	118

#	Article	IF	CITATIONS
37	Competition of CO2/H2O in adsorption based CO2 capture. Energy Procedia, 2009, 1, 1123-1130.	1.8	114
38	Cycle Development and Design for CO ₂ Capture from Flue Gas by Vacuum Swing Adsorption. Environmental Science & Technology, 2008, 42, 563-569.	4.6	111
39	Potential for using municipal solid waste as a resource for bioenergy with carbon capture and storage (BECCS). International Journal of Greenhouse Gas Control, 2018, 68, 1-15.	2.3	111
40	Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry A, 2018, 6, 23169-23196.	5.2	109
41	Improved removal capacity of magnetite for Cr(VI) by electrochemical reduction. Journal of Hazardous Materials, 2019, 374, 26-34.	6.5	108
42	Determination of Composition Range for "Molecular Trapdoor―Effect in Chabazite Zeolite. Journal of Physical Chemistry C, 2013, 117, 12841-12847.	1.5	104
43	Effects of amino functionality on uptake of CO2, CH4 and selectivity of CO2/CH4 on titanium based MOFs. Fuel, 2015, 160, 318-327.	3.4	99
44	Ordered mesoporous graphitized pyrolytic carbon materials: synthesis, graphitization, and electrochemical properties. Journal of Materials Chemistry, 2012, 22, 8835.	6.7	87
45	Effects of water vapour on CO2 capture with vacuum swing adsorption using activated carbon. Chemical Engineering Journal, 2013, 230, 64-72.	6.6	87
46	Remediation of heavy metal contaminated soils by organic acid extraction and electrochemical adsorption. Environmental Pollution, 2020, 264, 114745.	3.7	85
47	Synthesis of well dispersed polymer grafted metal–organic framework nanoparticles. Chemical Communications, 2015, 51, 15566-15569.	2.2	81
48	Revised global kinetic measurements of methanol oxidation in supercritical water. Industrial & Engineering Chemistry Research, 1993, 32, 236-239.	1.8	80
49	Direct Electrodeposition of Porous Gold Nanowire Arrays for Biosensing Applications. ChemPhysChem, 2009, 10, 436-441.	1.0	79
50	Anomalous Henry's law behavior of nitrogen and carbon dioxide adsorption on alkali-exchanged chabazite zeolites. Separation and Purification Technology, 2009, 67, 336-343.	3.9	79
51	Adsorption characteristics of a fully exchanged potassium chabazite zeolite prepared from decomposition of zeolite Y. Microporous and Mesoporous Materials, 2009, 117, 497-507.	2.2	78
52	High-throughput CO2 capture using PIM-1@MOF based thin film composite membranes. Chemical Engineering Journal, 2020, 396, 125328.	6.6	78
53	Silicaâ€Templated Synthesis of Ordered Mesoporous Tungsten Carbide/Graphitic Carbon Composites with Nanocrystalline Walls and High Surface Areas via a Temperatureâ€Programmed Carburization Route. Small, 2009, 5, 2738-2749.	5.2	76
54	High temperature materials for CO2 capture. Energy Procedia, 2009, 1, 623-630.	1.8	76

#	Article	IF	CITATIONS
55	Improved methanol yield and selectivity from CO2 hydrogenation using a novel Cu-ZnO-ZrO2 catalyst supported on Mg-Al layered double hydroxide (LDH). Journal of CO2 Utilization, 2019, 29, 57-64.	3.3	76
56	Fast solution-adaptive finite volume method for PSA/VSA cycle simulation; 1 single step simulation. Computers and Chemical Engineering, 2000, 23, 1701-1712.	2.0	75
57	Increasing both selectivity and permeability of mixed-matrix membranes: Sealing the external surface of porous MOF nanoparticles. Journal of Membrane Science, 2017, 535, 350-356.	4.1	75
58	Binary Adsorption Equilibrium of Carbon Dioxide and Water Vapor on Activated Alumina. Langmuir, 2009, 25, 10666-10675.	1.6	72
59	Carbon monoxide oxidation in supercritical water: the effects of heat transfer and the water-gas shift reaction on observed kinetics. Energy & Fuels, 1992, 6, 586-597.	2.5	70
60	Cage and Window Effects in the Adsorption of <i>n</i> -Alkanes on Chabazite and SAPO-34. Journal of Physical Chemistry C, 2008, 112, 16593-16599.	1.5	66
61	Simultaneous biogas purification and CO2 capture by vacuum swing adsorption using zeolite NaUSY. Chemical Engineering Journal, 2018, 334, 2593-2602.	6.6	65
62	Comparison of Traditional and Structured Adsorbents for CO ₂ Separation by Vacuum-Swing Adsorption. Industrial & Engineering Chemistry Research, 2010, 49, 4832-4841.	1.8	64
63	Opportunities for application of BECCS in the Australian power sector. Applied Energy, 2018, 224, 615-635.	5.1	64
64	Synthesis, characterization and hydrogen storage properties of microporous carbons templated by cation exchanged forms of zeolite Y with propylene and butylene as carbon precursors. Microporous and Mesoporous Materials, 2007, 102, 159-170.	2.2	61
65	Entropic effects and isosteric heats of nitrogen and carbon dioxide adsorption on chabazite zeolites. Microporous and Mesoporous Materials, 2010, 132, 22-30.	2.2	61
66	Functionalized UiO-66 by Single and Binary (OH) ₂ and NO ₂ Groups for Uptake of CO ₂ and CH ₄ . Industrial & Engineering Chemistry Research, 2016, 55, 7924-7932.	1.8	61
67	One-pot generation of mesoporous carbon supported nanocrystalline calcium oxides capable of efficient CO2capture over a wide range of temperatures. Physical Chemistry Chemical Physics, 2011, 13, 2495-2503.	1.3	60
68	Temperature-regulated guest admission and release in microporous materials. Nature Communications, 2017, 8, 15777.	5.8	60
69	Postcombustion Carbon Capture Using Thin-Film Composite Membranes. Accounts of Chemical Research, 2019, 52, 1905-1914.	7.6	60
70	Adsorption and Separation of C1â^'C8 Alcohols on SAPO-34. Journal of Physical Chemistry C, 2011, 115, 8117-8125.	1.5	58
71	Synthesis of uniform periodic mesoporous organosilica hollow spheres with large-pore size and efficient encapsulation capacity for toluene and the large biomolecule bovine serum albumin. Microporous and Mesoporous Materials, 2010, 132, 543-551.	2.2	57
72	Effect of the addition of polyvinylpyrrolidone as a pore-former on microstructure and mechanical strength of porous alumina ceramics. Ceramics International, 2013, 39, 7551-7556.	2.3	56

#	Article	IF	CITATIONS
73	Application of the reaction engineering approach (REA) for modeling intermittent drying under time-varying humidity and temperature. Chemical Engineering Science, 2011, 66, 2149-2156.	1.9	55
74	Effect of flue gas impurities on CO2 capture performance from flue gas at coal-fired power stations by vacuum swing adsorption. Energy Procedia, 2009, 1, 1115-1122.	1.8	54
75	CO2 capture using a novel hybrid monolith (H-ZSM5/activated carbon) as adsorbent by combined vacuum and electric swing adsorption (VESA). Chemical Engineering Journal, 2019, 358, 707-717.	6.6	54
76	Zeolite synthesis from waste fly ash and its application in CO2 capture from flue gas streams. Adsorption, 2011, 17, 795-800.	1.4	51
77	The role of water on postcombustion CO ₂ capture by vacuum swing adsorption: Bed layering and purge to feed ratio. AICHE Journal, 2014, 60, 673-689.	1.8	51
78	Direct electrodeposition of gold nanotube arrays for sensing applications. Journal of Materials Chemistry, 2008, 18, 463-467.	6.7	50
79	MOF Scaffold for a Highâ€Performance Mixedâ€Matrix Membrane. Angewandte Chemie - International Edition, 2018, 57, 8597-8602.	7.2	50
80	High-performance Cu2+ adsorption of birnessite using electrochemically controlled redox reactions. Journal of Hazardous Materials, 2018, 354, 107-115.	6.5	50
81	Tuning the Morphology of Bismuth Ferrite Nano―and Microcrystals: From Sheets to Fibers. Small, 2007, 3, 1523-1528.	5.2	49
82	Direct electrodeposition of Pt nanotube arrays and their enhanced electrocatalytic activities. Electrochemistry Communications, 2009, 11, 190-193.	2.3	49
83	Modelling and evaluation of dual-reflux pressure swing adsorption cycles: Part I. Mathematical models. Chemical Engineering Science, 2006, 61, 7223-7233.	1.9	48
84	Multi-objective optimisation of a hybrid vacuum swing adsorption and low-temperature post-combustion CO2 capture. Journal of Cleaner Production, 2016, 111, 193-203.	4.6	48
85	Synthesis of a novel hybrid adsorbent which combines activated carbon and zeolite NaUSY for CO2 capture by electric swing adsorption (ESA). Chemical Engineering Journal, 2018, 336, 659-668.	6.6	48
86	Intermittent Drying of Mango Tissues: Implementation of the Reaction Engineering Approach. Industrial & Engineering Chemistry Research, 2011, 50, 1089-1098.	1.8	47
87	Performance of mesoporous silicas (MCM-41 and SBA-15) and carbon (CMK-3) in the removal of gas-phase naphthalene: adsorption capacity, rate and regenerability. RSC Advances, 2016, 6, 21193-21203.	1.7	47
88	The CIDES process: Fractionation of concentrated microalgal paste for co-production of biofuel, nutraceuticals, and high-grade protein feed. Algal Research, 2016, 19, 299-306.	2.4	47
89	Preparation of Activated Carbons with Large Specific Surface Areas from Biomass Corncob and Their Adsorption Equilibrium for Methane, Carbon Dioxide, Nitrogen, and Hydrogen. Industrial & Engineering Chemistry Research, 2011, 50, 9286-9294.	1.8	46
90	Formation and photocatalytic properties of bismuth ferrite submicrocrystals with tunable morphologies. New Journal of Chemistry, 2011, 35, 937.	1.4	46

#	Article	IF	CITATIONS
91	Life cycle analysis (LCA) of low emission methanol and di-methyl ether (DME) derived from natural gas. Fuel, 2018, 220, 871-878.	3.4	46
92	Sr-LSX zeolite for air separation. Chemical Engineering Journal, 2019, 362, 482-486.	6.6	46
93	Potassium Chabazite: A Potential Nanocontainer for Gas Encapsulation. Journal of Physical Chemistry C, 2010, 114, 22025-22031.	1.5	45
94	Converting 3D rigid metal–organic frameworks (MOFs) to 2D flexible networks via ligand exchange for enhanced CO ₂ /N ₂ and CH ₄ /N ₂ separation. Chemical Communications, 2015, 51, 14716-14719.	2.2	45
95	The use of reduced copper metal–organic frameworks to facilitate CuAAC click chemistry. Chemical Communications, 2016, 52, 12226-12229.	2.2	44
96	Separation of CO ₂ and CH ₄ by Pressure Swing Adsorption Using a Molecular Trapdoor Chabazite Adsorbent for Natural Gas Purification. Industrial & Engineering Chemistry Research, 2020, 59, 7857-7865.	1.8	44
97	Adsorption of CO2, N2, and CH4 in Cs-exchanged chabazite: A combination of van der Waals density functional theory calculations and experiment study. Journal of Chemical Physics, 2014, 140, 084705.	1.2	43
98	Infrared and convective drying of thin layer of polyvinyl alcohol (PVA)/glycerol/water mixture—The reaction engineering approach (REA). Chemical Engineering and Processing: Process Intensification, 2010, 49, 348-357.	1.8	42
99	An optimal trapdoor zeolite for exclusive admission of CO ₂ at industrial carbon capture operating temperatures. Chemical Communications, 2018, 54, 3134-3137.	2.2	42
100	Enhancing plasticization-resistance of mixed-matrix membranes with exceptionally high CO2/CH4 selectivity through incorporating ZSM-25 zeolite. Journal of Membrane Science, 2019, 583, 23-30.	4.1	42
101	Fast Finite-Volume Method for PSA/VSA Cycle SimulationExperimental Validation. Industrial & Engineering Chemistry Research, 2001, 40, 3217-3224.	1.8	41
102	Ordered micro-porous carbon molecular sieves containing well-dispersed platinum nanoparticles for hydrogen storage. Microporous and Mesoporous Materials, 2009, 119, 39-46.	2.2	41
103	Impact of operating parameters on CO 2 capture using carbon monolith by Electrical Swing Adsorption technology (ESA). Chemical Engineering Journal, 2017, 327, 441-453.	6.6	41
104	Structured zeolite NaX coatings on ceramic cordierite monolith supports for PSA applications. Microporous and Mesoporous Materials, 2010, 130, 38-48.	2.2	40
105	A metal-ion-assisted assembly approach to synthesize disulfide-bridged periodical mesoporous organosilicas with high sulfide contents and efficient adsorption. Applied Surface Science, 2010, 256, 5334-5342.	3.1	40
106	Direct synthesis of hierarchical LTA zeolite via a low crystallization and growth rate technique in presence of cetyltrimethylammonium bromide. Journal of Colloid and Interface Science, 2012, 382, 1-12.	5.0	40
107	One-step fabrication of ZIF-8/polymer composite spheres by a phase inversion method for gas adsorption. Colloid and Polymer Science, 2013, 291, 2711-2717.	1.0	40
108	Assessment of ZIF materials for CO2 capture from high pressure natural gas streams. Chemical Engineering Journal, 2015, 280, 486-493.	6.6	40

#	Article	IF	CITATIONS
109	Synthesis of Carbonaceous Poly(furfuryl alcohol) Membrane for Water Desalination. Industrial & Engineering Chemistry Research, 2010, 49, 4175-4180.	1.8	39
110	Mathematical modeling of intermittent and convective drying of rice and coffee using the reaction engineering approach (REA). Journal of Food Engineering, 2011, 105, 638-646.	2.7	39
111	Promoting CO2 hydrogenation to methanol by incorporating adsorbents into catalysts: Effects of hydrotalcite. Chemical Engineering Journal, 2019, 378, 122052.	6.6	39
112	Zeolite-supported manganese oxides decrease the Cd uptake of wheat plants in Cd-contaminated weakly alkaline arable soils. Journal of Hazardous Materials, 2021, 419, 126464.	6.5	39
113	Dual mode roll-up effect in multicomponent non-isothermal adsorption processes with multilayered bed packing. Chemical Engineering Science, 2011, 66, 1825-1834.	1.9	38
114	Modeling of Drying of Food Materials with Thickness of Several Centimeters by the Reaction Engineering Approach (REA). Drying Technology, 2011, 29, 961-973.	1.7	38
115	Enrichment of low grade CH4 from N2/CH4 mixtures using vacuum swing adsorption with activated carbon. Chemical Engineering Science, 2021, 229, 116152.	1.9	38
116	Effects of feed gas concentration, temperature and process parameters on vacuum swing adsorption performance for CO2 capture. Chemical Engineering Journal, 2015, 265, 47-57.	6.6	37
117	Synthesis of Ordered Mesoporous Carbon Materials with Semi-Graphitized Walls via Direct In-situ Silica-Confined Thermal Decomposition of CH4 and Their Hydrogen Storage Properties. Topics in Catalysis, 2009, 52, 12-26.	1.3	36
118	Biogas upgrading through kinetic separation of carbon dioxide and methane over Rb- and Cs-ZK-5 zeolites. RSC Advances, 2014, 4, 62511-62524.	1.7	36
119	SiC nanofiber reinforced porous ceramic hollow fiber membranes. Journal of Materials Chemistry A, 2014, 2, 5841.	5.2	36
120	Practical separation performance evaluation of coal mine methane upgrading with carbon molecular sieves. Chemical Engineering Journal, 2019, 367, 295-303.	6.6	36
121	Upgrading Biogas at Low Pressure by Vacuum Swing Adsorption. Industrial & Engineering Chemistry Research, 2015, 54, 404-413.	1.8	35
122	Electroreduction of CO ₂ /CO to C ₂ Products: Process Modeling, Downstream Separation, System Integration, and Economic Analysis. Industrial & Engineering Chemistry Research, 2021, 60, 17862-17880.	1.8	35
123	Zinc/ZnO core–shell hexagonal nanodisk dendrites and their photoluminescence. Acta Materialia, 2007, 55, 5039-5044.	3.8	34
124	Improvement of MCDI operation and design through experiment and modelling: Regeneration with brine and optimum residence time. Desalination, 2017, 417, 36-51.	4.0	34
125	Solar Irradiation Induced Transformation of Ferrihydrite in the Presence of Aqueous Fe ²⁺ . Environmental Science & Technology, 2019, 53, 8854-8861.	4.6	34
126	Towards sustainable microalgal biomass processing: anaerobic induction of autolytic cell-wall self-ingestion in lipid-rich <i>Nannochloropsis</i> slurries. Green Chemistry, 2019, 21, 2967-2982.	4.6	34

#	Article	IF	CITATIONS
127	Gating effect for gas adsorption in microporous materials—mechanisms and applications. Chemical Society Reviews, 2022, 51, 1139-1166.	18.7	34
128	Modelling and evaluation of dual reflux pressure swing adsorption cycles: Part II. Productivity and energy consumption. Chemical Engineering Science, 2006, 61, 7234-7239.	1.9	33
129	The effect of wall porosity and zeolite film thickness on the dynamic behavior of adsorbents in the form of coated monoliths. Separation and Purification Technology, 2011, 81, 191-199.	3.9	33
130	Modelling the kinetics of lipid extraction from wet microalgal concentrate: A novel perspective on a classical process. Chemical Engineering Journal, 2014, 242, 234-253.	6.6	33
131	Temperature controlled invertible selectivity for adsorption of N2 and CH4 by molecular trapdoor chabazites. Chemical Communications, 2014, 50, 4544.	2.2	33
132	A New Multi-bed Vacuum Swing Adsorption Cycle for CO2 Capture from Flue Gas Streams. Energy Procedia, 2017, 114, 2467-2480.	1.8	33
133	NOx removal with efficient recycling of NO2 from iron-ore sintering flue gas: A novel cyclic adsorption process. Journal of Hazardous Materials, 2021, 407, 124380.	6.5	33
134	Fundamental Kinetics of Methanol Oxidation in Supercritical Water. ACS Symposium Series, 1989, , 259-275.	0.5	32
135	Optimization of synthesis procedures for structured PSA adsorbents. Adsorption, 2008, 14, 687-693.	1.4	32
136	Zeolite monoliths with hierarchical designed pore network structure: Synthesis and performance. Chemical Engineering Journal, 2013, 223, 48-58.	6.6	32
137	CO2 capture by vacuum swing adsorption: role of multiple pressure equalization steps. Adsorption, 2015, 21, 509-522.	1.4	32
138	Performance of mesoporous silicas and carbon in adsorptive removal of phenanthrene as a typical gaseous polycyclic aromatic hydrocarbon. Microporous and Mesoporous Materials, 2017, 239, 9-18.	2.2	32
139	A numerical modelling study of SO2 adsorption on activated carbons with new rate equations. Chemical Engineering Journal, 2018, 353, 858-866.	6.6	32
140	Effect of water vapor from power station flue gas on CO2 capture by vacuum swing adsorption with activated carbon. Journal of Fuel Chemistry and Technology, 2011, 39, 169-174.	0.9	31
141	Microwave assisted vacuum regeneration for CO2 capture from wet flue gas. Adsorption, 2014, 20, 201-210.	1.4	31
142	Li ⁺ /ZSM-25 Zeolite as a CO ₂ Capture Adsorbent with High Selectivity and Improved Adsorption Kinetics, Showing CO ₂ -Induced Framework Expansion. Journal of Physical Chemistry C, 2018, 122, 18933-18941.	1.5	31
143	CO2 capture from high concentration CO2 natural gas by pressure swing adsorption at the CO2CRC Otway site, Australia. International Journal of Greenhouse Gas Control, 2019, 83, 1-10.	2.3	31
144	Micro-channel development and hydrogen adsorption properties in templated microporous carbons containing platinum nanoparticles. Carbon, 2011, 49, 1305-1317.	5.4	30

#	Article	IF	CITATIONS
145	Novel low energy hydrogen–deuterium isotope breakthrough separation using a trapdoor zeolite. Chemical Engineering Journal, 2016, 288, 161-168.	6.6	30
146	Intensified Biobutanol Recovery by using Zeolites with Complementary Selectivity. ChemSusChem, 2017, 10, 2968-2977.	3.6	30
147	A Sustainability Framework for Bioenergy with Carbon Capture and Storage (BECCS) Technologies. Energy Procedia, 2017, 114, 6044-6056.	1.8	30
148	Thermodynamic analysis of molecular simulations of N2 and O2 adsorption on zeolites under plateau special conditions. Applied Surface Science, 2019, 480, 868-875.	3.1	30
149	The effect of nitrogen depletion on the cell size, shape, density and gravitational settling of Nannochloropsis salina, Chlorella sp. (marine) and Haematococcus pluvialis. Algal Research, 2019, 39, 101454.	2.4	27
150	Ultrapermeable Composite Membranes Enhanced Via Doping with Amorphous MOF Nanosheets. ACS Central Science, 2021, 7, 671-680.	5.3	27
151	Adsorption of xylene isomers on ordered hexagonal mesoporous FDU-15 polymer and carbon materials. Adsorption, 2009, 15, 123-132.	1.4	26
152	One-step fabrication of ordered Pt–Cu alloy nanotube arrays for ethanol electrooxidation. Materials Letters, 2010, 64, 1169-1172.	1.3	26
153	Optimal design of engineered gas adsorbents: Pore-scale level. Chemical Engineering Science, 2012, 69, 270-278.	1.9	26
154	Moderate-pressure conversion of H2 and CO2 to methanol via adsorption enhanced hydrogenation. International Journal of Hydrogen Energy, 2019, 44, 21913-21925.	3.8	26
155	Electrochemical adsorption of cadmium and arsenic by natural Fe-Mn nodules. Journal of Hazardous Materials, 2020, 390, 122165.	6.5	26
156	A density functional theory study for the adsorption of various gases on a caesium-exchanged trapdoor chabazite. Computational Materials Science, 2016, 122, 307-313.	1.4	25
157	Synthesis of large-pore phenyl-bridged mesoporous organosilica with thick walls by evaporation-induced self-assembly for efficient benzene adsorption. Journal of Colloid and Interface Science, 2010, 346, 429-435.	5.0	24
158	Application of the reaction engineering approach (REA) to model cyclic drying of thin layers of polyvinyl alcohol (PVA)/glycerol/water mixture. Chemical Engineering Science, 2010, 65, 5193-5203.	1.9	24
159	Simple, Accurate and Robust Modeling of Various Systems of Drying of Foods and Biomaterials: A Demonstration of the Feasibility of the Reaction Engineering Approach (REA). Drying Technology, 2011, 29, 1519-1528.	1.7	24
160	Electrosorption of cadmium and arsenic from wastewaters using nitrogen-doped biochar: Mechanism and application. Journal of Environmental Management, 2022, 301, 113921.	3.8	24
161	Pressure Drop in a Packed Bed under Nonadsorbing and Adsorbing Conditions. Industrial & Engineering Chemistry Research, 2005, 44, 7234-7241.	1.8	23
162	Mass-transfer models for rapid pressure swing adsorption simulation. AICHE Journal, 2006, 52, 3126-3145.	1.8	23

#	Article	IF	CITATIONS
163	Hydrogen adsorption in transition metal carbon nano-structures. Adsorption, 2008, 14, 265-274.	1.4	23
164	Synthesis of biomorphic zeolite honeycomb monoliths with 16 000 cells per square inch. Journal of Materials Chemistry, 2009, 19, 8372.	6.7	23
165	Photochemical Formation Process of Schwertmannite on Montmorillonite and Corresponding Cr(VI) Adsorption Capacity. ACS Earth and Space Chemistry, 2019, 3, 718-727.	1.2	23
166	Ordered Hierarchical Porous Platinum Membranes with Tailored Mesostructures. Angewandte Chemie - International Edition, 2010, 49, 10101-10105.	7.2	22
167	Desorption Kinetics of Naphthalene and Acenaphthene over Two Activated Carbons via Thermogravimetric Analysis. Energy & Fuels, 2015, 29, 5303-5310.	2.5	22
168	Adsorption thermodynamics and desorption properties of gaseous polycyclic aromatic hydrocarbons on mesoporous adsorbents. Adsorption, 2017, 23, 361-371.	1.4	22
169	MOF Scaffold for a Highâ€Performance Mixedâ€Matrix Membrane. Angewandte Chemie, 2018, 130, 8733-8738.	1.6	22
170	Oxidation Kinetics of Model Compounds of Metabolic Waste in Supercritical Water. , 1990, , .		21
171	Synthesis of mesoporous LaPO4 nanostructures with controllable morphologies. New Journal of Chemistry, 2009, 33, 1657.	1.4	21
172	A comparative study on conversion of porous and non-porous metal–organic frameworks (MOFs) into carbon-based composites for carbon dioxide capture. Polyhedron, 2016, 120, 30-35.	1.0	21
173	Guidelines for Techno-Economic Analysis of Adsorption Processes. Frontiers in Chemical Engineering, 2021, 2, .	1.3	21
174	Synthesis of Ni5Ga3 catalyst by Hydrotalcite-like compound (HTlc) precursors for CO2 hydrogenation to methanol. Applied Catalysis B: Environmental, 2020, 275, 119067.	10.8	21
175	Additively manufactured, highly-uniform flow distributor for process intensification. Chemical Engineering and Processing: Process Intensification, 2019, 143, 107595.	1.8	20
176	Insights into adsorption separation of N2/O2 mixture on FAU zeolites under plateau special conditions: A molecular simulation study. Separation and Purification Technology, 2020, 251, 117405.	3.9	20
177	Adsorption and catalytic oxidation of arsenite on Fe-Mn nodules in the presence of oxygen. Chemosphere, 2020, 259, 127503.	4.2	20
178	The Effects of a Readily Adsorbed Trace Component (Water) in a Bulk Separation PSA Process:Â The Case of Oxygen VSA. Industrial & Engineering Chemistry Research, 2001, 40, 2702-2713.	1.8	19
179	Improved ODE integrator and mass transfer approach for simulating a cyclic adsorption process. Computers and Chemical Engineering, 2003, 27, 883-899.	2.0	19
180	Novel post-combustion capture technologies on a lignite fired power plant - results of the CO2CRC/H3 capture project. Energy Procedia, 2011, 4, 1668-1675.	1.8	19

#	Article	IF	CITATIONS
181	Vacuum Exhaust Process in Pilot-Scale Vacuum Pressure Swing Adsorption for Coal Mine Ventilation Air Methane Enrichment. Energies, 2018, 11, 1030.	1.6	19
182	Effective Gas Separation Performance Enhancement Obtained by Constructing Polymorphous Core–Shell Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2019, 11, 30234-30239.	4.0	19
183	Extraction of iron and aluminum from high-iron bauxite by ammonium sulfate roasting and water leaching. Journal of Iron and Steel Research International, 2019, 26, 578-584.	1.4	19
184	Nitrogen Rejection from Methane via a "Trapdoor―K-ZSM-25 Zeolite. Journal of the American Chemical Society, 2021, 143, 15195-15204.	6.6	19
185	Adsorption of N2, O2, and Ar in Potassium Chabazite. Adsorption, 2005, 11, 173-177.	1.4	18
186	Strategies for CO2 capture from different CO2 emission sources by vacuum swing adsorption technology. Chinese Journal of Chemical Engineering, 2016, 24, 460-467.	1.7	18
187	Novel adsorption processes for carbon dioxide capture within a IGCC process. Energy Procedia, 2009, 1, 631-638.	1.8	17
188	Modeling of high-temperature treatment of wood using the reaction engineering approach (REA). Bioresource Technology, 2011, 102, 6214-6220.	4.8	17
189	Nile Red Staining for Oil Determination in Microalgal Cells: A New Insight through Statistical Modelling. International Journal of Chemical Engineering, 2015, 2015, 1-14.	1.4	17
190	Effects of Co(II) ion exchange, Ni(II)- and V(V)-doping on the transformation behaviors of Cr(III) on hexagonal turbostratic birnessite-water interfaces. Environmental Pollution, 2020, 256, 113462.	3.7	17
191	Integrated adsorption and absorption process for post-combustion CO2 capture. Frontiers of Chemical Science and Engineering, 2021, 15, 483-492.	2.3	17
192	Microflow calorimeter design for heats of mixing. AICHE Journal, 1987, 33, 604-618.	1.8	16
193	Novel pre-combustion capture technologies in action–Results of the CO2CRC/HRL Mulgrave capture project. Energy Procedia, 2011, 4, 1192-1198.	1.8	16
194	Fundamental Kinetics and Mechanistic Pathways for Oxidation Reactions in Supercritical Water. , 1988, , .		15
195	Investigation of the possibility of low pressure encapsulation of carbon dioxide in potassium chabazite (KCHA) and sodium chabazite (NaCHA) zeolites. Journal of Colloid and Interface Science, 2009, 337, 332-337.	5.0	15
196	CO2 capture at elevated temperatures by cyclic adsorption processes. RSC Advances, 2012, 2, 5291.	1.7	15
197	Formation of LTA zeolite crystals with multi-hollow polycrystalline core–shell structure via aggregation–recrystallization route in presence of emulsion droplets. Microporous and Mesoporous Materials, 2012, 160, 75-84.	2.2	15
198	Cyclic Steady-State Axial Temperature Profiles in Multilayer, Bulk Gas PSAThe Case of Oxygen VSA. Industrial & Engineering Chemistry Research, 2002, 41, 2753-2765.	1.8	14

#	Article	IF	CITATIONS
199	Application of an adsorption non-flow exergy function to an exergy analysis of a pressure swing adsorption cycle. Chemical Engineering Science, 2004, 59, 3537-3557.	1.9	14
200	Synthesis of hydrophobic zeolite X@SiO2 core–shell composites. Materials Chemistry and Physics, 2012, 133, 1144-1151.	2.0	14
201	Nitrogen Availability and the Nature of Extracellular Organic Matter of Microalgae. Industrial & Engineering Chemistry Research, 2020, 59, 6795-6805.	1.8	14
202	High-efficiency As(III) oxidation and electrocoagulation removal using hematite with a chargeâ discharge technique. Science of the Total Environment, 2020, 703, 135678.	3.9	14
203	Hydrothermal synthesis of novel AlPO4-5 brooms and nano-fibers and their templated carbon structures. CrystEngComm, 2009, 11, 739.	1.3	13
204	High temperature adsorption materials and their performance for pre-combustion capture of carbon dioxide. Energy Procedia, 2011, 4, 1199-1206.	1.8	13
205	Methane Recovery from Coal Bed Gas Using Modified Activated Carbons: A Combined Method for Assessing the Role of Functional Groups. Energy & amp; Fuels, 2015, 29, 6858-6865.	2.5	13
206	Pd(0) loaded Zn ₂ (azoBDC) ₂ (dabco) as a heterogeneous catalyst. CrystEngComm, 2017, 19, 4182-4186.	1.3	13
207	Perturbation techniques for accelerated convergence of cyclic steady state (CSS) in oxygen VSA simulations. Chemical Engineering Science, 2002, 57, 4145-4159.	1.9	12
208	Synthesis and adsorption properties of titanosilicates ETS-4 and ETS-10 from fly ash. Journal of Hazardous Materials, 2011, 195, 340-345.	6.5	12
209	Mesoporous Carbon-supported Cu/ZnO for Methanol Synthesis from Carbon Dioxide. Australian Journal of Chemistry, 2014, 67, 907.	0.5	12
210	Saving, Selling, Earning, and Negotiating: How Adolescents Acquire Monetary Lump Sums and Who Considers Saving. Journal of Consumer Affairs, 2016, 50, 342-371.	1.2	12
211	Heats of adsorption on mixed-cation LiNa-LSX: Estimating SIII site occupancy by Li. Chemical Engineering Science, 2018, 178, 194-198.	1.9	12
212	Removal of As(V) from wastewaters using magnetic iron oxides formed by zero-valent iron electrocoagulation. Journal of Environmental Management, 2022, 307, 114519.	3.8	12
213	Nanoporous niobium phosphate electrolyte membrane for low temperature fuel cell. Journal of Membrane Science, 2010, 356, 147-153.	4.1	11
214	CO2 Capture by Vacuum Swing Adsorption Using F200 and Sorbead WS as Protective Pre-layers. Chinese Journal of Chemical Engineering, 2012, 20, 849-855.	1.7	11
215	Intensified isothermal reactor for methanol synthesis. Chemical Engineering and Processing: Process Intensification, 2019, 143, 107606.	1.8	11
216	Solvent Impregnated Polymers for Carbon Capture. Industrial & Engineering Chemistry Research, 2019, 58, 6626-6634.	1.8	11

#	Article	IF	CITATIONS
217	Solubility of Carbon Monoxide and Hydrogen in Methanol and Methyl Formate: 298–373 K and 0.3–3.3 MPa. Journal of Chemical & Engineering Data, 2019, 64, 5609-5621.	1.0	11
218	Synergistic adsorption of Cd(II) and As(V) on birnessite under electrochemical control. Chemosphere, 2020, 247, 125822.	4.2	11
219	Physical Aging Investigations of a Spirobisindane-Locked Polymer of Intrinsic Microporosity. , 2020, 2, 993-998.		11
220	Recovery of high-purity NO2 and SO2 products from iron-ore sintering flue gas by distillation: process design, optimization and analysis. Separation and Purification Technology, 2021, 264, 118308.	3.9	11
221	Remediation of As-contaminated soils using citrate extraction coupled with electrochemical removal. Science of the Total Environment, 2022, 817, 153042. Macropore diffusion dusty-gas coefficient for pelletised zeolites from breakthrough experiments in	3.9	11
222	the <mml:math <br="" altimg="si117.gif" display="inline" overflow="scroll">xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:math>	1.9	10
223	xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns. Chemical Engineering Science, 2005, Enhancement in specific absorption rate by solvent microencapsulation. AICHE Journal, 2018, 64, 4066-4079.	1.8	10
224	Molecular Simulation of Naphthalene, Phenanthrene, and Pyrene Adsorption on MCM-41. International Journal of Molecular Sciences, 2019, 20, 665.	1.8	10
225	The optimal design and operation of a hybrid renewable micro-grid with the decoupled liquid air energy storage. Journal of Cleaner Production, 2022, 334, 130189.	4.6	10
226	Separation of He/ <scp>N₂</scp> / <scp>CH₄</scp> ternary mixtures by a tripleâ€reflux pressure swing adsorption process. AICHE Journal, 2022, 68, e17569.	1.8	10
227	Limitations of the LDF/equimolar counterdiffusion assumption for mass transport within porous adsorbent pellets. Chemical Engineering Science, 2002, 57, 4227-4242.	1.9	9
228	Silica/Polyethyleneimine Composite Adsorbent S-PEI for CO2Capture by Vacuum Swing Adsorption (VSA). ACS Symposium Series, 2012, , 177-205.	0.5	9
229	Thermally coupled dark-anoxia incubation: A platform technology to induce auto-fermentation and thus cell-wall thinning in both nitrogen-replete and nitrogen-deplete Nannochloropsis slurries. Bioresource Technology, 2019, 290, 121769.	4.8	9
230	Two-Dimensional Modeling of Pressure Swing Adsorption (PSA) Oxygen Generation with Radial-Flow Adsorber. Applied Sciences (Switzerland), 2019, 9, 1153.	1.3	9
231	Adsorption and desorption of gaseous naphthalene on carbonaceous sorbents: Insights into advantageous pore sizes and morphologies. Journal of Cleaner Production, 2021, 314, 127905.	4.6	9
232	Experimental study on oxygen concentrator with wide product flow rate range: individual parametric effect and process improvement strategy. Separation and Purification Technology, 2021, 274, 118918.	3.9	9
233	Encapsulation of highly viscous CO2 capture solvents for enhanced capture kinetics: Modeling investigation of mass transfer mechanisms. Chemical Engineering Journal, 2022, 428, 131603.	6.6	9
234	Combined remediation effects of biochar, zeolite and humus on Cd-contaminated weakly alkaline soils in wheat farmland. Chemosphere, 2022, 302, 134851.	4.2	9

#	Article	IF	CITATIONS
235	PEI modified mesocellular siliceous foam: A novel sorbent for CO2. Energy Procedia, 2011, 4, 839-843.	1.8	8
236	A facile method to synthesis a mesoporous carbon supported methanol catalyst containing well dispersed Cu/ZnO. Materials Research Bulletin, 2014, 60, 232-237.	2.7	8
237	Knudsen Diffusion and Viscous Flow Dusty-Gas Coefficients for Pelletised Zeolites from Kinetic Uptake Experiments. Adsorption, 2005, 11, 427-432.	1.4	7
238	Bioprocess Engineering Aspects of Biodiesel and Bioethanol Production from Microalgae. , 2013, , 601-628.		7
239	Density Functional Theory Computational Study of Alkali Cation-Exchanged Sodalite-like Zeolitelike Metal–Organic Framework for CO2, N2, and CH4 Adsorption. Journal of Physical Chemistry C, 2015, 119, 27449-27456.	1.5	7
240	Polyrotaxane-based thin film composite membranes for enhanced nanofiltration performance. Separation and Purification Technology, 2020, 246, 116893.	3.9	7
241	Effect of intermittent purge on O2 production with rapid pressure swing adsorption technology. Adsorption, 2021, 27, 181-189.	1.4	7
242	Separation of hydrogen from methane by vacuum swing adsorption. Chemical Engineering Journal, 2022, 450, 137911.	6.6	7
243	Bulk synthesis of carbon nanostructures: Hollow stacked-cone-helices by chemical vapor deposition. Materials Research Bulletin, 2008, 43, 2368-2373.	2.7	6
244	Simulations of model metal-organic frameworks for the separation of carbon dioxide. Energy Procedia, 2011, 4, 568-575.	1.8	6
245	Exchange Method Using Acidâ€Solvent Synergy for Metal–Organic Framework Synthesis (EASYâ€MOFs) Based on a Typical Pillar‣ayered Parent Structure. European Journal of Inorganic Chemistry, 2016, 2016, 1466-1469.	1.0	6
246	Can the addition of carbon nanoparticles to a polyimide membrane reduce plasticization?. Separation and Purification Technology, 2017, 183, 333-340.	3.9	6
247	Electrical Regulation of CO ₂ Adsorption in the Metal–Organic Framework MIL-53. ACS Applied Materials & Interfaces, 2022, 14, 13904-13913.	4.0	6
248	A Practical Method for the Dynamic Determination of the Product Oxygen Concentration in Pressure-Swing Adsorption Systems. Industrial & Engineering Chemistry Research, 2003, 42, 5287-5292.	1.8	5
249	Kinetics of Mixed Adsorbent Systems in Gas–Solid Adsorption. Adsorption Science and Technology, 2003, 21, 9-34.	1.5	5
250	The VSA Process for Oxygen Enrichment: Process Description and Dynamic Modeling Using Neural Networks. International Journal of Smart Engineering System Design, 2003, 5, 1-9.	0.2	5
251	Synthesis of ordered mesostructured polymer–organosilica composites by the triconstituent co-assembly method. Materials Letters, 2011, 65, 624-627.	1.3	5
252	Preparation, characterization and catalytic performance of Cu nanowire catalyst for CO2 hydrogenation. Journal of Central South University, 2018, 25, 691-700.	1.2	5

#	Article	IF	CITATIONS
253	Highly dispersed Cu-ZnO-ZrO2 nanoparticles on hydrotalcite adsorbent as efficient composite catalysts for CO2 hydrogenation to methanol. Korean Journal of Chemical Engineering, 2021, 38, 747-755.	1.2	5
254	Adsorption Equilibrium and Kinetics of CO ₂ and H ₂ O on Activated Carbon. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2012, 27, 139-145.	0.6	5
255	Oxygen selective iron and cobalt–metalloporphyrin polymers – Extraordinary selectivity at low temperature. Microporous and Mesoporous Materials, 2016, 222, 63-72.	2.2	4
256	Learnings from CO2CRC Capture Pilot Plant Testing – Assessing Technology Development. Energy Procedia, 2017, 114, 5855-5868.	1.8	4
257	Capture of dilute methane with a novel dynamicâ€feed dualâ€reflux pressure swing adsorption process. AICHE Journal, 2022, 68, e17390.	1.8	4
258	The Dynamic Response and Characteristics of an Oxygen Vacuum Swing Adsorption Process to Step Perturbations. Part 1. Open Loop Responses. Adsorption Science and Technology, 2003, 21, 319-347.	1.5	3
259	A Method for the Determination of Composition Profiles in Industrial Air Separation, Pressure Swing Adsorption Systems. Adsorption Science and Technology, 2003, 21, 35-52.	1.5	3
260	Fundamental kinetics of methane oxidation in supercritical water [Erratum to document cited in CA114(23):228192x]. Energy & Fuels, 1991, 5, 617-617.	2.5	2
261	Synthesis, characterization and hydrogen storage on ordered carbon adsorbents. Studies in Surface Science and Catalysis, 2005, 156, 603-608.	1.5	2
262	Research on Adsorption and Desorption Performance of Gas-Phase Naphthalene on Hydrophobic Modified FDU-15. Processes, 2022, 10, 574.	1.3	2
263	Graphitic N-Free/N-Doped Nanostructured Carbon Molecular Sieves via CVD Method and their Hydrogen Storage. Advanced Materials Research, 0, 66, 179-182.	0.3	1
264	Characterization and Electrochemical Properties of Nitrogen-Doped Ordered Microporous Carbons Containing Well-Dispersed Platinum Nanoparticles. Advanced Materials Research, 0, 284-286, 875-879.	0.3	1
265	Phenol Molecular Sheets Woven by Water Cavities in Hydrophobic Slit Nanospaces. Langmuir, 2018, 34, 15150-15159.	1.6	1
266	3-D Modeling of Gas–Solid Two-Phase Flow in a π-Shaped Centripetal Radial Flow Adsorber. Applied Sciences (Switzerland), 2020, 10, 614.	1.3	1
267	The Dynamic Response and Characteristics of an Oxygen Vacuum Swing Adsorption Process to Step Perturbations. Part 2. Sensitivity Analysis and Controller Pairings. Adsorption Science and Technology, 2003, 21, 349-362.	1.5	Ο
268	Electrochemical characterization of ordered microporous carbons containing well-dispersed platinum nanoparticles. , 2010, , .		0
269	Template synthesis of hierarchically ordered nanoporous oxide membrane. , 2010, , .		0
270	Study of Fibrous AlPO ₄ -5 via Hydrothermal Conditions: Morphology Evolution and Growth Mechanism. Advanced Materials Research, 2012, 535-537, 2535-2539.	0.3	0

#	Article	IF	CITATIONS
271	Editorial for the special issue "FOA-13―in "adsorption― Adsorption, 2020, 26, 971-972.	1.4	Ο
272	Technology Options for CO ₂ Adsorption. SSRN Electronic Journal, 0, , .	0.4	0
273	Innovative Adsorbents and Membranes Tested for High CO2 Content NG Separation at CO2CRC's Otway International Test Centre. SSRN Electronic Journal, 0, , .	0.4	Ο