Sho Kitamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8903213/publications.pdf Version: 2024-02-01

SHO KITAMOTO

#	Article	IF	CITATIONS
1	Periodontal connection with intestinal inflammation: Microbiological and immunological mechanisms. Periodontology 2000, 2022, 89, 142-153.	6.3	19
2	Inflammatory bowel disease and carcinogenesis. Cancer and Metastasis Reviews, 2022, 41, 301-316.	2.7	24
3	Untangling the oral–gut axis in the pathogenesis of intestinal inflammation. International Immunology, 2022, 34, 485-490.	1.8	11
4	The Butyrate-Producing Bacterium <i>Clostridium butyricum</i> Suppresses <i>Clostridioides difficile</i> Infection via Neutrophil- and Antimicrobial Cytokine–Dependent but GPR43/109a-Independent Mechanisms. Journal of Immunology, 2021, 206, 1576-1585.	0.4	47
5	DUOX2 variants associate with preclinical disturbances in microbiota-immune homeostasis and increased inflammatory bowel disease risk. Journal of Clinical Investigation, 2021, 131, .	3.9	35
6	The pathogenic oral–gut–liver axis: new understandings and clinical implications. Expert Review of Clinical Immunology, 2021, 17, 727-736.	1.3	18
7	A potential pathogenic association between periodontal disease and Crohn's disease. JCI Insight, 2021, 6, .	2.3	35
8	Dietary l-serine confers a competitive fitness advantage to Enterobacteriaceae in the inflamed gut. Nature Microbiology, 2020, 5, 116-125.	5.9	93
9	Microbial adaptation to the healthy and inflamed gut environments. Gut Microbes, 2020, 12, 1857505.	4.3	29
10	The Bacterial Connection between the Oral Cavity and the Gut Diseases. Journal of Dental Research, 2020, 99, 1021-1029.	2.5	162
11	The Intermucosal Connection between the Mouth and Gut in Commensal Pathobiont-Driven Colitis. Cell, 2020, 182, 447-462.e14.	13.5	314
12	Interleukin-22-mediated host glycosylation prevents Clostridioides difficile infection by modulating the metabolic activity of the gut microbiota. Nature Medicine, 2020, 26, 608-617.	15.2	136
13	IL-10 produced by macrophages regulates epithelial integrity in the small intestine. Scientific Reports, 2019, 9, 1223.	1.6	72
14	Flagellin-mediated activation of IL-33-ST2 signaling by a pathobiont promotes intestinal fibrosis. Mucosal Immunology, 2019, 12, 632-643.	2.7	57
15	The regenerating family member 3 Î ² instigates IL-17A-mediated neutrophil recruitment downstream of NOD1/2 signalling for controlling colonisation resistance independently of microbiota community structure. Gut, 2019, 68, 1190-1199.	6.1	14
16	Mutant p53-Expressing Cells Undergo Necroptosis via Cell Competition with the Neighboring Normal Epithelial Cells. Cell Reports, 2018, 23, 3721-3729.	2.9	42
17	Cell competition with normal epithelial cells promotes apical extrusion of transformed cells through metabolicÂchanges. Nature Cell Biology, 2017, 19, 530-541.	4.6	172
18	Mycolactone cytotoxicity in Schwann cells could explain nerve damage in Buruli ulcer. PLoS Neglected Tropical Diseases, 2017, 11, e0005834.	1.3	9

SHO КІТАМОТО

#	Article	IF	CITATIONS
19	Pathogenic role of the gut microbiota in gastrointestinal diseases. Intestinal Research, 2016, 14, 127.	1.0	108
20	Functional Characterization of Inflammatory Bowel Disease–Associated Gut Dysbiosis in Gnotobiotic Mice. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 468-481.	2.3	189
21	Diet-dependent, microbiota-independent regulation of IL-10-producing lamina propria macrophages in the small intestine. Scientific Reports, 2016, 6, 27634.	1.6	44
22	A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell, 2016, 167, 1339-1353.e21.	13.5	1,882
23	Regulation of virulence: the rise and fall of gastrointestinal pathogens. Journal of Gastroenterology, 2016, 51, 195-205.	2.3	53
24	Increased Expression of DUOX2 Is an Epithelial Response toÂMucosal Dysbiosis Required for Immune Homeostasis inÂMouse Intestine. Gastroenterology, 2015, 149, 1849-1859.	0.6	120
25	EPLIN is a crucial regulator for extrusion of RasV12-transformed cells. Journal of Cell Science, 2015, 128, 781-9.	1.2	65
26	Intestinal macrophages arising from CCR2+ monocytes control pathogen infection by activating innate lymphoid cells. Nature Communications, 2015, 6, 8010.	5.8	86
27	Ribosomal protein S3 regulates GLI2-mediated osteosarcoma invasion. Cancer Letters, 2015, 356, 855-861.	3.2	44
28	GLI2 is a novel therapeutic target for metastasis of osteosarcoma. International Journal of Cancer, 2015, 136, 1276-1284.	2.3	40
29	Diagnosis of Pancreatic Neoplasms Using a Novel Method of DNA Methylation Analysis of Mucin Expression in Pancreatic Juice. PLoS ONE, 2014, 9, e93760.	1.1	30
30	Expression of MUC4 Mucin Is Observed Mainly in the Intestinal Type of Intraductal Papillary Mucinous Neoplasm of the Pancreas. Pancreas, 2013, 42, 1120-1128.	0.5	20
31	MUC1 enhances hypoxia-driven angiogenesis through the regulation of multiple proangiogenic factors. Oncogene, 2013, 32, 4614-4621.	2.6	59
32	Pathobiological Implications of MUC16/CA125 Expression in Intrahepatic Cholangiocarcinoma-Mass Forming Type. Pathobiology, 2012, 79, 101-106.	1.9	61
33	A novel anti-MUC1 antibody against the MUC1 cytoplasmic tail domain: use in sensitive identification of poorly differentiated cells in adenocarcinoma of the stomach. Gastric Cancer, 2012, 15, 370-381.	2.7	22
34	Aberrant DNA methylation of tumorâ€related genes in oral rinse. Cancer, 2012, 118, 4298-4308.	2.0	71
35	The application of methylation specific electrophoresis (MSE) to DNA methylation analysis of the 5' CpG island of mucin in cancer cells. BMC Cancer, 2012, 12, 67.	1.1	20
36	RBPJ Is a Novel Target for Rhabdomyosarcoma Therapy. PLoS ONE, 2012, 7, e39268.	1.1	12

SHO КІТАМОТО

#	Article	IF	CITATIONS
37	Expression of MUC17 Is Regulated by HIF1α-Mediated Hypoxic Responses and Requires a Methylation-Free Hypoxia Responsible Element in Pancreatic Cancer. PLoS ONE, 2012, 7, e44108.	1.1	21
38	MUC4 and MUC1 Expression in Adenocarcinoma of the Stomach Correlates with Vessel Invasion and Lymph Node Metastasis: An Immunohistochemical Study of Early Gastric Cancer. PLoS ONE, 2012, 7, e49251.	1.1	49
39	Mucins in human neoplasms: Clinical pathology, gene expression and diagnostic application. Pathology International, 2011, 61, 697-716.	0.6	90
40	Epigenetic regulation of mucin genes in human cancers. Clinical Epigenetics, 2011, 2, 85-96.	1.8	43
41	DNA methylation and histone H3-K9 modifications contribute to MUC17 expression. Glycobiology, 2011, 21, 247-256.	1.3	31
42	Expression of MUC5AC, an early marker of pancreatobiliary cancer, is regulated by DNA methylation in the distal promoter region in cancer cells. Journal of Hepato-Biliary-Pancreatic Sciences, 2010, 17, 844-854.	1.4	24
43	Promoter hypomethylation contributes to the expression of MUC3A in cancer cells. Biochemical and Biophysical Research Communications, 2010, 397, 333-339.	1.0	20
44	Aberrant methylation of <i>MUC1</i> and <i>MUC4</i> promoters are potential prognostic biomarkers for pancreatic ductal adenocarcinomas. Oncotarget, 0, 7, 42553-42565.	0.8	50