Johannes Vorwerk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8903103/publications.pdf Version: 2024-02-01

29
g-index
2521
ed citing authors

IOHANNES VODWERK

#	Article	IF	CITATIONS
1	A comprehensive study on electroencephalography and magnetoencephalography sensitivity to cortical and subcortical sources. Human Brain Mapping, 2021, 42, 978-992.	1.9	61
2	Characterization of the Somatosensory System. Neuromethods, 2021, , 153-169.	0.2	0
3	DUNEuro—A software toolbox for forward modeling in bioelectromagnetism. PLoS ONE, 2021, 16, e0252431.	1.1	25
4	Interactive computation and visualization of deep brain stimulation effects using Duality. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2020, 8, 3-14.	1.3	3
5	Evaluation of methodologies for computing the deep brain stimulation volume of tissue activated. Journal of Neural Engineering, 2019, 16, 066024.	1.8	61
6	A retrospective evaluation of automated optimization of deep brain stimulation parameters. Journal of Neural Engineering, 2019, 16, 064002.	1.8	20
7	The multipole approach for EEG forward modeling using the finite element method. NeuroImage, 2019, 201, 116039.	2.1	9
8	Interleaved deep brain stimulation for dyskinesia management in Parkinson's disease. Movement Disorders, 2019, 34, 1722-1727.	2.2	18
9	Influence of Head Tissue Conductivity Uncertainties on EEG Dipole Reconstruction. Frontiers in Neuroscience, 2019, 13, 531.	1.4	64
10	Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. NeuroImage, 2019, 184, 293-316.	2.1	527
11	Anodic stimulation misunderstood: preferential activation of fiber orientations with anodic waveforms in deep brain stimulation. Journal of Neural Engineering, 2019, 16, 016026.	1.8	81
12	Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes. Journal of Neural Engineering, 2018, 15, 026005.	1.8	104
13	The Discontinuous Galerkin Finite Element Method for Solving the MEG and the Combined MEG/EEG Forward Problem. Frontiers in Neuroscience, 2018, 12, 30.	1.4	36
14	The FieldTrip-SimBio pipeline for EEG forward solutions. BioMedical Engineering OnLine, 2018, 17, 37.	1.3	103
15	A Discontinuous Galerkin Method to Solve the EEG Forward Problem Using the Subtraction Approach. SIAM Journal of Scientific Computing, 2017, 39, B138-B164.	1.3	48
16	Connectivity Predicts deep brain stimulation outcome in <scp>P</scp> arkinson disease. Annals of Neurology, 2017, 82, 67-78.	2.8	514
17	A Mixed Finite Element Method to Solve the EEG Forward Problem. IEEE Transactions on Medical Imaging, 2017, 36, 930-941.	5.4	30
18	Electroencephalography (EEG) forward modeling via <i>H</i> (div) finite element sources with focal interpolation. Physics in Medicine and Biology, 2016, 61, 8502-8520.	1.6	22

JOHANNES VORWERK

#	Article	IF	CITATIONS
19	Using reciprocity for relating the simulation of transcranial current stimulation to the EEG forward problem. Neurolmage, 2016, 140, 163-173.	2.1	42
20	Electrical Stimulation of the Human Cerebral Cortex by Extracranial Muscle Activity: Effect Quantification With Intracranial EEG and FEM Simulations. IEEE Transactions on Biomedical Engineering, 2016, 63, 2552-2563.	2.5	10
21	The role of blood vessels in high-resolution volume conductor head modeling of EEG. NeuroImage, 2016, 128, 193-208.	2.1	48
22	Influence of the head model on EEG and MEG source connectivity analyses. NeuroImage, 2015, 110, 60-77.	2.1	98
23	Comparison Study for Whitney (Raviart–Thomas)-Type Source Models in Finite-Element-Method-Based EEG Forward Modeling. IEEE Transactions on Biomedical Engineering, 2015, 62, 2648-2656.	2.5	24
24	Combined EEG/MEG Can Outperform Single Modality EEG or MEG Source Reconstruction in Presurgical Epilepsy Diagnosis. PLoS ONE, 2015, 10, e0118753.	1.1	79
25	Combining EEG and MEG for the Reconstruction of Epileptic Activity Using a Calibrated Realistic Volume Conductor Model. PLoS ONE, 2014, 9, e93154.	1.1	81
26	A guideline for head volume conductor modeling in EEG and MEG. NeuroImage, 2014, 100, 590-607.	2.1	236
27	Investigation of tDCS volume conduction effects in a highly realistic head model. Journal of Neural Engineering, 2014, 11, 016002.	1.8	154
28	The time course of feature integration in plaid patterns revealed by meta- and paracontrast masking. Journal of Vision, 2012, 12, 13-13.	0.1	3
29	Comparison of Boundary Element and Finite Element Approaches to the EEG Forward Problem. Biomedizinische Technik, 2012, 57, .	0.9	37
30	Validation and Application of Realistic Head Modelling to MEG. Biomedizinische Technik, 2012, 57, .	0.9	1