Xuyong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8902991/publications.pdf Version: 2024-02-01

XUVONC YANC

#	Article	IF	CITATIONS
1	Efficient Tandem Quantumâ€Dot LEDs Enabled by An Inorganic Semiconductorâ€Metalâ€Dielectric Interconnecting Layer Stack. Advanced Materials, 2022, 34, e2108150.	21.0	53
2	Efficient Tandem Quantumâ€Dot LEDs Enabled by An Inorganic Semiconductorâ€Metalâ€Dielectric Interconnecting Layer Stack (Adv. Mater. 4/2022). Advanced Materials, 2022, 34, .	21.0	0
3	Allâ€Inorganic Perovskite Nanocrystals with Remarkably Enhanced Optoelectronic Properties Realized by an Alkeneâ€Free Solvent Strategy and Their Electroluminescence. Advanced Optical Materials, 2022, 10, .	7.3	2
4	Efficient all-inorganic perovskite light-emitting diodes with a multifunctional potassium bromide doped hole transport layer. Optical Materials Express, 2022, 12, 1708.	3.0	2
5	Suppressing the Cation Exchange at the Core/Shell Interface of InP Quantum Dots by a Selenium Shielding Layer Enables Efficient Green Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 15401-15406.	8.0	18
6	Light-emitting field-effect transistors with EQE over 20% enabled by a dielectric-quantum dots-dielectric sandwich structure. Science Bulletin, 2022, 67, 529-536.	9.0	23
7	Perovskite nanocrystals-polymer composites with a micro/nano structured superhydrophobic surface for stable and efficient white light-emitting diodes. Chemical Engineering Journal, 2022, 437, 135303.	12.7	20
8	A Multifunctional Ionic Liquid Additive Enabling Stable and Efficient Perovskite Lightâ€Emitting Diodes. Small, 2022, 18, e2200498.	10.0	24
9	Enhancing the Light Outputâ€Coupling of Inverted Topâ€Emitting Organic Lightâ€Emitting Diodes by Using the Localized Surface Plasmon Resonance of Ag Nanoparticles. Advanced Materials Interfaces, 2022, 9, .	3.7	4
10	A mixed solvent strategy enabling efficient all-solution-processed perovskite light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 8964-8971.	5.5	2
11	Boosting the efficiency and stability of green InP quantum dot light emitting diodes by interface dipole modulation. Journal of Materials Chemistry C, 2022, 10, 8192-8198.	5.5	12
12	Mixed-Dimensional MXene-Based Composite Electrodes Enable Mechanically Stable and Efficient Flexible Perovskite Light-Emitting Diodes. Nano Letters, 2022, 22, 4246-4252.	9.1	24
13	Quasiâ€Shellâ€Growth Strategy Achieves Stable and Efficient Green InP Quantum Dot Lightâ€Emitting Diodes. Advanced Science, 2022, 9, .	11.2	33
14	Amine-Terminated Carbon Dots Linking Hole Transport Layer and Vertically Oriented Quasi-2D Perovskites through Hydrogen Bonds Enable Efficient LEDs. ACS Nano, 2022, 16, 9679-9690.	14.6	41
15	On the accurate characterization of quantum-dot light-emitting diodes for display applications. Npj Flexible Electronics, 2022, 6, .	10.7	8
16	The solution-processed fabrication of perovskite light-emitting diodes for low-cost and commercial applications. Journal of Materials Chemistry C, 2021, 9, 12037-12045.	5.5	7
17	Halide perovskite based light-emitting diodes: a scaling up perspective. Journal of Materials Chemistry C, 2021, 9, 7532-7538.	5.5	7
18	Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nature Communications, 2021, 12, 1246.	12.8	274

#	Article	IF	CITATIONS
19	Solventâ€Regulated Electronic Structure and Morphology of Inorganic Hole Injection Layers for Efficient Quantum Dot Lightâ€Emitting Diodes. Advanced Photonics Research, 2021, 2, 2000124.	3.6	5
20	Allâ€Inorganic Quantum Dot Lightâ€Emitting Diodes with Suppressed Luminance Quenching Enabled by Chloride Passivated Tungsten Phosphate Hole Transport Layers. Small, 2021, 17, e2100030.	10.0	33
21	Lowâ€Threshold Amplified Spontaneous Emission in Blue Quantum Dots Enabled by Effectively Suppressing Auger Recombination. Advanced Optical Materials, 2021, 9, 2100068.	7.3	8
22	Core/Shell Metal Halide Perovskite Nanocrystals for Optoelectronic Applications. Advanced Functional Materials, 2021, 31, 2100438.	14.9	67
23	Editorial: Advanced Nanomaterials for Light-Emitting Diodes and Solar Cells. Frontiers in Chemistry, 2021, 9, 741760.	3.6	1
24	A Study on Solution-Processed Y2O3 Films Modified by Atomic Layer Deposition Al2O3 as Dielectrics in ZnO Thin Film Transistor. Coatings, 2021, 11, 969.	2.6	6
25	37.1: Invited Paper: High Colorâ€purity Lightâ€emitting Diodes Based on Quantum dots/perovskites. Digest of Technical Papers SID International Symposium, 2021, 52, 477-477.	0.3	0
26	A seed-mediated and double shell strategy to realize large-size ZnSe/ZnS/ZnS quantum dots for high color purity blue light-emitting diodes. Nanoscale, 2021, 13, 4562-4568.	5.6	23
27	Boosting Efficiency of InP Quantum Dots-Based Light-Emitting Diodes by an In-Doped ZnO Electron Transport Layer. IEEE Electron Device Letters, 2021, 42, 1806-1809.	3.9	15
28	Blue light-emitting diodes based on halide perovskites: Recent advances and strategies. Materials Today, 2021, 51, 222-246.	14.2	64
29	Efficient Allâ€5olutionâ€Processed Perovskite Lightâ€Emitting Diodes Enabled by Smallâ€Molecule Doped Electron Injection Layers. Advanced Optical Materials, 2020, 8, 1900567.	7.3	25
30	Metal Halide Perovskite Nanorods: Shape Matters. Advanced Materials, 2020, 32, e2002736.	21.0	48
31	Metal Halide Perovskites: Metal Halide Perovskite Nanorods: Shape Matters (Adv. Mater. 46/2020). Advanced Materials, 2020, 32, 2070348.	21.0	1
32	Boosting the Efficiency of NiO _{<i>x</i>} -Based Perovskite Light-Emitting Diodes by Interface Engineering. ACS Applied Materials & Interfaces, 2020, 12, 53528-53536.	8.0	32
33	A Multi-functional Molecular Modifier Enabling Efficient Large-Area Perovskite Light-Emitting Diodes. Joule, 2020, 4, 1977-1987.	24.0	111
34	Improving Efficiency and Stability in Quasi-2D Perovskite Light-Emitting Diodes by a Multifunctional LiF Interlayer. ACS Applied Materials & Interfaces, 2020, 12, 43018-43023.	8.0	53
35	Applying InP/ZnS Green-Emitting Quantum Dots and InP/ZnSe/ZnS Red-Emitting Quantum Dots to Prepare WLED With Enhanced Photoluminescence Performances. IEEE Access, 2020, 8, 154683-154690.	4.2	4
36	Promoted Hole Transport Capability by Improving Lateral Current Spreading for Highâ€Efficiency Quantum Dot Lightâ€Emitting Diodes. Advanced Science, 2020, 7, 2001760.	11.2	30

#	Article	IF	CITATIONS
37	Core/Shell Perovskite Nanocrystals: Synthesis of Highly Efficient and Environmentally Stable FAPbBr ₃ /CsPbBr ₃ for LED Applications. Advanced Functional Materials, 2020, 30, 1910582.	14.9	135
38	Atomically thin heavy-metal-free ZnTe nanoplatelets formed from magic-size nanoclusters. Nanoscale Advances, 2020, 2, 3316-3322.	4.6	9
39	Surface modification of all-inorganic halide perovskite nanorods by a microscale hydrophobic zeolite for stable and sensitive laser humidity sensing. Nanoscale, 2020, 12, 13360-13367.	5.6	21
40	Lattice Distortion in Mixed-Anion Lead Halide Perovskite Nanorods Leads to their High Fluorescence Anisotropy. , 2020, 2, 814-820.		33
41	Hybrid plasmonic nano-emitters with controlled single quantum emitter positioning on the local excitation field. Nature Communications, 2020, 11, 3414.	12.8	33
42	Low-Voltage Hf-ZnO Thin Film Transistors With Ag Nanowires Gate Electrode and Their Application in Logic Circuit. IEEE Journal of the Electron Devices Society, 2020, 8, 152-156.	2.1	5
43	Energy Level Modification with Carbon Dot Interlayers Enables Efficient Perovskite Solar Cells and Quantum Dot Based Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 1910530.	14.9	72
44	Moleculeâ€Induced pâ€Doping in Perovskite Nanocrystals Enables Efficient Colorâ€Saturated Red Lightâ€Emitting Diodes. Small, 2020, 16, e2001062.	10.0	53
45	Tenâ€Gramâ€6cale Synthesis of FAPbX ₃ Perovskite Nanocrystals by a Highâ€Power Roomâ€Temperature Ultrasonicâ€Assisted Strategy and Their Electroluminescence. Advanced Materials Technologies, 2020, 5, 1901089.	5.8	16
46	Excitonic optical properties of cesium trifluoroacetate induced CsPbBr3 thin film with anti-solvent treatment. Optical Materials, 2020, 106, 110005.	3.6	8
47	All-solution processed inverted green quantum dot light-emitting diodes with concurrent high efficiency and long lifetime. Materials Horizons, 2019, 6, 2009-2015.	12.2	66
48	Stable, Strongly Emitting Cesium Lead Bromide Perovskite Nanorods with High Optical Gain Enabled by an Intermediate Monomer Reservoir Synthetic Strategy. Nano Letters, 2019, 19, 6315-6322.	9.1	101
49	High-performance light-soaking-free polymer solar cells based on a LiF modified ZnO electron extraction layer. Journal of Materials Chemistry C, 2019, 7, 9354-9361.	5.5	18
50	Solution-processed ZnO/MoS2 quantum dots electron extraction layer for high performance inverted organic photovoltaics. Organic Electronics, 2019, 75, 105381.	2.6	11
51	InP quantum dots-based electroluminescent devices. Chinese Physics B, 2019, 28, 118103.	1.4	7
52	Efficient and Stable Inverted Quantum Dot Light-Emitting Diodes Enabled by An Inorganic Copper-Doped Tungsten Phosphate Hole-Injection Layer. ACS Applied Materials & Interfaces, 2019, 11, 40267-40273.	8.0	22
53	44.3: <i>Invited Paper:</i> Solutionâ€processed inorganic charge transport layers for efficient and stable quantumâ€dot LEDs. Digest of Technical Papers SID International Symposium, 2019, 50, 490-490.	0.3	0
54	Towards all-solution-processed top-illuminated flexible organic solar cells using ultrathin Ag-modified graphite-coated poly(ethylene terephthalate) substrates. Nanophotonics, 2019, 8, 297-306.	6.0	22

#	Article	IF	CITATIONS
55	Stepwise Bi-Layer Hole-Transport Interlayers With Deep Highest Occupied Molecular Orbital Level for Efficient Green Quantum Dot Light-Emitting Diodes. IEEE Electron Device Letters, 2019, 40, 1139-1142.	3.9	10
56	Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nature Communications, 2019, 10, 665.	12.8	350
57	Ultrastable Inorganic Perovskite Nanocrystals Coated with a Thick Long-Chain Polymer for Efficient White Light-Emitting Diodes. Chemistry of Materials, 2019, 31, 1936-1940.	6.7	107
58	High color rendering index white LEDs fabricated using InP/ZnS green-emitting quantum dots and InP/ZnSe/ZnS red-emitting quantum dots. , 2019, , .		0
59	Synthesis and electroluminescence of novel white fluorescence quantum dots based on a Zn–Ga–S host. Chemical Communications, 2019, 55, 14206-14209.	4.1	8
60	Trimethylsilyl Iodine-Mediated Synthesis of Highly Bright Red-Emitting CsPbI ₃ Perovskite Quantum Dots with Significantly Improved Stability. Chemistry of Materials, 2019, 31, 881-889.	6.7	88
61	Solution-Processed Double-Junction Quantum-Dot Light-Emitting Diodes with an EQE of Over 40%. ACS Applied Materials & Interfaces, 2019, 11, 1065-1070.	8.0	44
62	3D Photoluminescent Nanostructures Containing Quantum Dots Fabricated by Twoâ€Photon Polymerization: Influence of Quantum Dots on the Spatial Resolution of Laser Writing. Advanced Materials Technologies, 2019, 4, 1800522.	5.8	35
63	Recent advances in quantum dot-based light-emitting devices: Challenges and possible solutions. Materials Today, 2019, 24, 69-93.	14.2	213
64	Fast Postmoisture Treatment of Luminescent Perovskite Films for Efficient Lightâ€Emitting Diodes. Small, 2018, 14, e1703410.	10.0	35
65	High-efficiency all-inorganic full-colour quantum dot light-emitting diodes. Nano Energy, 2018, 46, 229-233.	16.0	52
66	Bright violet-to-aqua-emitting cadmium-free Ag-doped Zn–Ga–S quantum dots with high stability. Chemical Communications, 2018, 54, 4176-4179.	4.1	13
67	Efficient Deep-Blue Electrofluorescence with an External Quantum Efficiency Beyond 10%. IScience, 2018, 9, 532-541.	4.1	65
68	A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core–Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes. Chemistry of Materials, 2018, 30, 8002-8007.	6.7	159
69	Highâ€Efficiency, Solutionâ€Processed White Quantum Dot Lightâ€Emitting Diodes with Serially Stacked Red/Green/Blue Units. Advanced Optical Materials, 2018, 6, 1800652.	7.3	48
70	Nitrogen-Doped ZnO Film Fabricated Via Rapid Low-Temperature Atomic Layer Deposition for High-Performance ZnON Transistors. IEEE Transactions on Electron Devices, 2018, 65, 3283-3290.	3.0	22
71	Highly efficient, all-solution-processed, flexible white quantum dot light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 9642-9648.	5.5	38
72	Highly bright and stable white-light-emitting cadmium-free Ag,Mn co-doped Zn–In–S/ZnS quantum dots and their electroluminescence. Journal of Materials Chemistry C, 2018, 6, 10233-10240.	5.5	13

#	Article	IF	CITATIONS
73	Highâ€Efficiency and Stable Quantum Dot Lightâ€Emitting Diodes Enabled by a Solutionâ€Processed Metalâ€Doped Nickel Oxide Hole Injection Interfacial Layer. Advanced Functional Materials, 2017, 27, 1704278.	14.9	114
74	White-light-emitting Cu,Mn co-doped Zn–In–S/ZnS quantum dots with high stability and their electroluminescence. Journal of Materials Chemistry C, 2017, 5, 10533-10542.	5.5	30
75	Synthesis of WO _{<i>n</i>} â€WX ₂ (<i>n</i> =2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Lightâ€Emitting Diodes. Angewandte Chemie, 2017, 129, 10622-10626.	2.0	7
76	Synthesis of WO _{<i>n</i>} â€WX ₂ (<i>n</i> =2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2017, 56, 10486-10490.	13.8	21
77	Iodide capped PbS/CdS core-shell quantum dots for efficient long-wavelength near-infrared light-emitting diodes. Scientific Reports, 2017, 7, 14741.	3.3	32
78	LEDs: Highâ€Efficiency and Stable Quantum Dot Lightâ€Emitting Diodes Enabled by a Solutionâ€Processed Metalâ€Doped Nickel Oxide Hole Injection Interfacial Layer (Adv. Funct. Mater. 42/2017). Advanced Functional Materials, 2017, 27, .	14.9	0
79	Small-size and monodispersed red-emitting Pr ³⁺ doped barium molybdate nanocrystals with ultrahigh color purity. RSC Advances, 2016, 6, 65311-65314.	3.6	11
80	Improved quantum dot light-emitting diodes with a cathode interfacial layer. Organic Electronics, 2016, 32, 89-93.	2.6	31
81	Electroluminescence Efficiency Enhancement in Quantum Dot Lightâ€Emitting Diodes by Embedding a Silver Nanoisland Layer. Advanced Optical Materials, 2015, 3, 1439-1445.	7.3	59
82	A quinoxaline based N-heteroacene interfacial layer for efficient hole-injection in quantum dot light-emitting diodes. Nanoscale, 2015, 7, 11531-11535.	5.6	22
83	Colloidal quantum-dot LEDs with a solution-processed copper oxide (CuO) hole injection layer. Organic Electronics, 2015, 26, 245-250.	2.6	53
84	Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength. Nano Letters, 2015, 15, 7458-7466.	9.1	35
85	Transition metal oxides on organic semiconductors. Organic Electronics, 2014, 15, 871-877.	2.6	30
86	Stable, Efficient, and All-Solution-Processed Quantum Dot Light-Emitting Diodes with Double-Sided Metal Oxide Nanoparticle Charge Transport Layers. ACS Applied Materials & Interfaces, 2014, 6, 495-499.	8.0	66
87	Solution Processed Tungsten Oxide Interfacial Layer for Efficient Holeâ€Injection in Quantum Dot Lightâ€Emitting Diodes. Small, 2014, 10, 247-252.	10.0	96
88	Light-Emitting Diodes: Solution Processed Tungsten Oxide Interfacial Layer for Efficient Hole-Injection in Quantum Dot Light-Emitting Diodes (Small 2/2014). Small, 2014, 10, 246-246.	10.0	4
89	Light Extraction Efficiency Enhancement of Colloidal Quantum Dot Lightâ€Emitting Diodes Using Large cale Nanopillar Arrays. Advanced Functional Materials, 2014, 24, 5977-5984. 	14.9	68
90	Highly Flexible, Electrically Driven, Top-Emitting, Quantum Dot Light-Emitting Stickers. ACS Nano, 2014, 8, 8224-8231.	14.6	135

#	Article	IF	CITATIONS
91	Quantum Dot Light-Emitting Diode with Quantum Dots Inside the Hole Transporting Layers. ACS Applied Materials & Interfaces, 2013, 5, 6535-6540.	8.0	42
92	AC-driven, color- and brightness-tunable organic light-emitting diodes constructed from an electron only device. Organic Electronics, 2013, 14, 3195-3200.	2.6	36
93	Facile Synthesis of Luminescent AgInS ₂ –ZnS Solid Solution Nanorods. Small, 2013, 9, 2689-2695.	10.0	32
94	High-quality InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes. , 2012, , .		1
95	A bright cadmium-free, hybrid organic/quantum dot white light-emitting diode. Applied Physics Letters, 2012, 101, .	3.3	64
96	Full Visible Range Covering InP/ZnS Nanocrystals with High Photometric Performance and Their Application to White Quantum Dot Light‣mitting Diodes. Advanced Materials, 2012, 24, 4180-4185.	21.0	283
97	Bifunctional highly fluorescent hollow porous microspheres made of BaMoO4 : Pr3+ nanocrystals via a template-free synthesis. Journal of Materials Chemistry, 2011, 21, 9009.	6.7	24
98	Europium (II)-Doped Microporous Zeolite Derivatives with Enhanced Photoluminescence by Isolating Active Luminescence Centers. ACS Applied Materials & amp; Interfaces, 2011, 3, 4431-4436.	8.0	43
99	Self-Assembly and Photoluminescence Characterization of CaMoO[sub 4]:Eu[sup 3+],Na[sup +] Superstructure via a Facile Surfactant-Free Hydrothermal Method. Journal of the Electrochemical Society, 2011, 158, K74.	2.9	19
100	Photoluminescence of Eu2+-activated Na1â^'xAl1â^'xSi1+xO4 upon UV excitation. Journal of Rare Earths, 2010, 28, 34-36.	4.8	21
101	Investigation of near infrared reflectance by tuning the shape of SnO2 nanoparticles. Journal of Alloys and Compounds, 2010, 496, 261-264.	5.5	62
102	A Promising Deep Red Phosphor AgLaMo[sub 2]O[sub 8]:Pr[sup 3+] with Blue Excitation for White LED Application. Journal of the Electrochemical Society, 2010, 157, H278.	2.9	22
103	The investigation of optical properties by doping halogen in the BaMoO4:Pr3+ phosphor system. Journal of Alloys and Compounds, 2009, 479, 307-309.	5.5	39
104	Preparation and optical properties of Eu3+/Eu2+ in phosphors based on exchanging Eu3+-zeolite 13X. Journal of Alloys and Compounds, 2009, 480, 867-869.	5.5	16
105	Synthesis and characterization of new red phosphors for white LED applications. Journal of Materials Chemistry, 2009, 19, 3771.	6.7	123