
Kiryl A Yasakau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8902465/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Layer-by-Layer Assembled Nanocontainers for Self-Healing Corrosion Protection. Advanced Materials, 2006, 18, 1672-1678.	21.0	653
2	Anticorrosion Coatings with Self-Healing Effect Based on Nanocontainers Impregnated with Corrosion Inhibitor. Chemistry of Materials, 2007, 19, 402-411.	6.7	556
3	Nanostructured sol–gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3. Electrochimica Acta, 2005, 51, 208-217.	5.2	498
4	Active Anticorrosion Coatings with Halloysite Nanocontainers. Journal of Physical Chemistry C, 2008, 112, 958-964.	3.1	340
5	Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminium alloy. Corrosion Science, 2005, 47, 3368-3383.	6.6	324
6	Mechanism of Corrosion Inhibition of AA2024 by Rare-Earth Compounds. Journal of Physical Chemistry B, 2006, 110, 5515-5528.	2.6	315
7	High effective organic corrosion inhibitors for 2024 aluminium alloy. Electrochimica Acta, 2007, 52, 7231-7247.	5.2	287
8	Nanoporous titania interlayer as reservoir of corrosion inhibitors for coatings with self-healing ability. Progress in Organic Coatings, 2007, 58, 127-135.	3.9	280
9	Role of intermetallic phases in localized corrosion of AA5083. Electrochimica Acta, 2007, 52, 7651-7659.	5.2	267
10	Influence of inhibitor addition on the corrosion protection performance of sol–gel coatings on AA2024. Progress in Organic Coatings, 2008, 63, 352-361.	3.9	181
11	On the application of electrochemical impedance spectroscopy to study the self-healing properties of protective coatings. Electrochemistry Communications, 2007, 9, 2622-2628.	4.7	123
12	The synergistic combination of bis-silane and CeO2·ZrO2 nanoparticles on the electrochemical behaviour of galvanised steel in NaCl solutions. Electrochimica Acta, 2008, 53, 5913-5922.	5.2	120
13	TiOx self-assembled networks prepared by templating approach as nanostructured reservoirs for self-healing anticorrosion pre-treatments. Electrochemistry Communications, 2006, 8, 421-428.	4.7	116
14	Corrosion protection of AA2024 by sol–gel coatings modified with MBT-loaded polyurea microcapsules. Chemical Engineering Journal, 2016, 283, 1108-1117.	12.7	103
15	Active corrosion protection coating for a ZE41 magnesium alloy created by combining PEO and sol–gel techniques. RSC Advances, 2016, 6, 12553-12560.	3.6	84
16	Active corrosion protection of AA2024 by sol–gel coatings with cerium molybdate nanowires. Electrochimica Acta, 2013, 112, 236-246.	5.2	78
17	A novel bilayer system comprising LDH conversion layer and sol-gel coating for active corrosion protection of AA2024. Corrosion Science, 2018, 143, 299-313.	6.6	76
18	Synergistic corrosion inhibition on galvanically coupled metallic materials. Electrochemistry Communications, 2012, 20, 101-104.	4.7	75

KIRYL A YASAKAU

#	Article	IF	CITATIONS
19	Preparation and corrosion protective properties of nanostructured titania-containing hybrid sol–gel coatings on AA2024. Progress in Organic Coatings, 2008, 62, 226-235.	3.9	73
20	Corrosion inhibition of pure Mg containing a high level of iron impurity in pH neutral NaCl solution. Corrosion Science, 2018, 142, 222-237.	6.6	72
21	Effects of combined addition of Ca and Y on the corrosion behaviours of die-cast AZ91D magnesium alloy. Corrosion Science, 2020, 166, 108451.	6.6	56
22	Characterization and corrosion behavior of binary Mg-Ga alloys. Materials Characterization, 2017, 128, 85-99.	4.4	50
23	Lanthanide Salts as Corrosion Inhibitors for AA5083. Mechanism and Efficiency of Corrosion Inhibition. Journal of the Electrochemical Society, 2008, 155, C169.	2.9	48
24	Influence of sol-gel process parameters on the protection properties of sol–gel coatings applied on AA2024. Surface and Coatings Technology, 2014, 246, 6-16.	4.8	48
25	Surface evaluation and electrochemical behaviour of doped silane pre-treatments on galvanised steel substrates. Progress in Organic Coatings, 2007, 59, 214-223.	3.9	45
26	A critical review on the production and application of graphene and graphene-based materials in anti-corrosion coatings. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 309-355.	12.3	45
27	Cerium molybdate nanowires for active corrosion protection of aluminium alloys. Corrosion Science, 2012, 58, 41-51.	6.6	44
28	Localised Measurements of pH and Dissolved Oxygen as Complements to SVET in the Investigation of Corrosion at Defects in Coated Aluminum Alloy. Electroanalysis, 2010, 22, 2009-2016.	2.9	43
29	Role of intermetallics in corrosion of aluminum alloys. Smart corrosion protection. , 2018, , 425-462.		41
30	Zn-Al LDH growth on AA2024 and zinc and their intercalation with chloride: Comparison of crystal structure and kinetics. Applied Surface Science, 2020, 501, 144027.	6.1	41
31	One-step synthesis and growth mechanism of nitrate intercalated ZnAl LDH conversion coatings on zinc. Chemical Communications, 2019, 55, 6878-6881.	4.1	36
32	Initial stages of localized corrosion at cut-edges of adhesively bonded Zn and Zn-Al-Mg galvanized steel. Electrochimica Acta, 2016, 211, 126-141.	5.2	33
33	In situ surface film evolution during Mg aqueous corrosion in presence of selected carboxylates. Corrosion Science, 2020, 171, 108484.	6.6	32
34	Mechanisms of Localized Corrosion Inhibition of AA2024 by Cerium Molybdate Nanowires. Journal of Physical Chemistry C, 2013, 117, 5811-5823.	3.1	30
35	Volta Potential of Oxidized Aluminum Studied by Scanning Kelvin Probe Force Microscopy. Journal of Physical Chemistry C, 2010, 114, 8474-8484.	3.1	27
36	Influence of stripping and cooling atmospheres on surface properties and corrosion of zinc galvanizing coatings. Applied Surface Science, 2016, 389, 144-156.	6.1	26

KIRYL A YASAKAU

#	Article	IF	CITATIONS
37	The effect of carboxylate compounds on Volta potential and corrosion inhibition of Mg containing different levels of iron. Corrosion Science, 2022, 194, 109937.	6.6	25
38	Active Corrosion Protection by Nanoparticles and Conversion Films of Layered Double Hydroxides. Corrosion, 2014, 70, 436-445.	1.1	22
39	Application of AFM-Based Techniques in Studies of Corrosion and Corrosion Inhibition of Metallic Alloys. Corrosion and Materials Degradation, 2020, 1, 345-372.	2.4	22
40	Modification of carbon fibre reinforced polymer (CFRP) surface with sodium dodecyl sulphate for mitigation of cathodic activity. Applied Surface Science, 2019, 478, 924-936.	6.1	17
41	<i>In situ</i> kinetics studies of Zn–Al LDH intercalation with corrosion related species. Physical Chemistry Chemical Physics, 2020, 22, 17574-17586.	2.8	16
42	Mechanism of LDH Direct Growth on Aluminum Alloy Surface: A Kinetic and Morphological Approach. Journal of Physical Chemistry C, 2021, 125, 11687-11701.	3.1	15
43	Self-healing nanocoatings for corrosion control. , 2012, , 213-263.		13
44	Kelvin Microprobe Analytics on Iron-Enriched Corroded Magnesium Surface. Corrosion, 2017, 73, 583-595.	1.1	13
45	Smart self-healing coatings for corrosion protection of aluminium alloys. , 2014, , 224-274.		12
46	A critical look at interpretation of electrochemical impedance spectra of sol-gel coated aluminium. Electrochimica Acta, 2021, 378, 138091.	5.2	10
47	Influence of Oxygen Dissociation on the Oxidation of Iron. Oxidation of Metals, 2004, 62, 223-235.	2.1	9
48	Sacrificial protection of Mg-based resorbable implant alloy by magnetron sputtered Mg5Gd alloy coating: A short-term study. Corrosion Science, 2021, 189, 109590.	6.6	9
49	Study of the Corrosion Mechanism and Corrosion Inhibition of 2024 Aluminum Alloy by SKPFM Technique. Materials Science Forum, 2008, 587-588, 405-409.	0.3	7
50	Novel and self-healing anticorrosion coatings using rare earth compounds. , 2014, , 233-266.		7
51	Effect of the Anodic Titania Layer Thickness on Electrodeposition of Zinc on Ti/TiO ₂ from Deep Eutectic Solvent. Journal of the Electrochemical Society, 2017, 164, D88-D94.	2.9	7
52	Corrosion and Corrosion Protection of Aluminum Alloys. , 2018, , 115-127.		7
53	Anticorrosion thin film smart coatings for aluminum alloys. , 2020, , 429-454.		6
54	Corrosion behavior of AA2024-T6 and AA6065-T6 alloys in reline. Electrochimica Acta, 2020, 357, 136861.	5.2	6

KIRYL A YASAKAU

#	Article	IF	CITATIONS
55	Sol-Gel Coatings with Nanocontainers of Corrosion Inhibitors for Active Corrosion Protection of Metallic Materials. , 2017, , 1-37.		3
56	AFM Study of the Corrosion of Pipeline Steel in Organic Compounds Extracted from Soil. ECS Transactions, 2007, 11, 107-119.	0.5	1
57	Sol-Gel Coatings with Nanocontainers of Corrosion Inhibitors for Active Corrosion Protection of Metallic Materials. , 2018, , 2435-2471.		1
58	Two Thermodynamics-Based Approaches to Atomic Oxygen Sensing. Journal of Spacecraft and Rockets, 2006, 43, 426-430.	1.9	0
59	Sol-Gel Coatings with Nanocontainers of Corrosion Inhibitors for Active Corrosion Protection of Metallic Materials. , 2016, , 1-37.		0