Daniel Martins-de-Souza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8902235/publications.pdf

Version: 2024-02-01

		87888	102487
205	6,014	38	66
papers	citations	h-index	g-index
231	231	231	8844
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a HIF-11±/Glycolysis-Dependent Axis. Cell Metabolism, 2020, 32, 437-446.e5.	16.2	578
2	Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 2009, 259, 151-163.	3.2	180
3	Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia. Journal of Psychiatric Research, 2009, 43, 978-986.	3.1	165
4	Identification of proteomic signatures associated with depression and psychotic depression in post-mortem brains from major depression patients. Translational Psychiatry, 2012, 2, e87-e87.	4.8	162
5	Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia. Journal of Psychiatric Research, 2010, 44, 1176-1189.	3.1	158
6	Alterations in oligodendrocyte proteins, calcium homeostasis and new potential markers in schizophrenia anterior temporal lobe are revealed by shotgun proteome analysis. Journal of Neural Transmission, 2009, 116, 275-289.	2.8	137
7	Proteome analysis of schizophrenia patients Wernicke's area reveals an energy metabolism dysregulation. BMC Psychiatry, 2009, 9, 17.	2.6	133
8	2DE: The Phoenix of Proteomics. Journal of Proteomics, 2014, 104, 140-150.	2.4	123
9	Zika virus disrupts molecular fingerprinting of human neurospheres. Scientific Reports, 2017, 7, 40780.	3.3	120
10	The Role of Energy Metabolism Dysfunction and Oxidative Stress in Schizophrenia Revealed by Proteomics. Antioxidants and Redox Signaling, 2011, 15, 2067-2079.	5.4	113
11	The Energy Metabolism Dysfunction in Psychiatric Disorders Postmortem Brains: Focus on Proteomic Evidence. Frontiers in Neuroscience, 2017, 11, 493.	2.8	108
12	The proteome of schizophrenia. NPJ Schizophrenia, 2015, 1, 14003.	3.6	96
13	Proteomic changes in serum of first onset, antidepressant drug-naÃ ⁻ ve major depression patients. International Journal of Neuropsychopharmacology, 2014, 17, 1599-1608.	2.1	91
14	Proteome analysis of the plant pathogen Xylella fastidiosa reveals major cellular and extracellular proteins and a peculiar codon bias distribution. Proteomics, 2003, 3, 224-237.	2.2	87
15	Short term changes in the proteome of human cerebral organoids induced by 5-MeO-DMT. Scientific Reports, 2017, 7, 12863.	3.3	87
16	Proteome analysis of schizophrenia brain tissue. World Journal of Biological Psychiatry, 2010, 11, 110-120.	2.6	82
17	Dysregulated Expression of Neuregulin-1 by Cortical Pyramidal Neurons Disrupts Synaptic Plasticity. Cell Reports, 2014, 8, 1130-1145.	6.4	81
18	Protein phosphorylation patterns in serum from schizophrenia patients and healthy controls. Journal of Proteomics, 2012, 76, 43-55.	2.4	80

DANIEL MARTINS-DE-SOUZA

#	Article	IF	CITATIONS
19	Proteome and transcriptome analysis suggests oligodendrocyte dysfunction in schizophrenia. Journal of Psychiatric Research, 2010, 44, 149-156.	3.1	75
20	Derivation of Functional Human Astrocytes from Cerebral Organoids. Scientific Reports, 2017, 7, 45091.	3.3	75
21	Proteomic Analysis Identifies Dysfunction in Cellular Transport, Energy, and Protein Metabolism in Different Brain Regions of Atypical Frontotemporal Lobar Degeneration. Journal of Proteome Research, 2012, 11, 2533-2543.	3.7	73
22	Sex-specific proteome differences in the anterior cingulate cortex of schizophrenia. Journal of Psychiatric Research, 2010, 44, 989-991.	3.1	72
23	Proteomics, metabolomics, and protein interactomics in the characterization of the molecular features of major depressive disorder. Dialogues in Clinical Neuroscience, 2014, 16, 63-73.	3.7	72
24	Proteomics of the corpus callosum unravel pivotal players in the dysfunction of cell signaling, structure, and myelination in schizophrenia brains. European Archives of Psychiatry and Clinical Neuroscience, 2015, 265, 601-612.	3.2	70
25	Phosphoproteomic differences in major depressive disorder postmortem brains indicate effects on synaptic function. European Archives of Psychiatry and Clinical Neuroscience, 2012, 262, 657-666.	3.2	67
26	Disturbed macro-connectivity in schizophrenia linked to oligodendrocyte dysfunction: from structural findings to molecules. NPJ Schizophrenia, 2015, 1, 15034.	3.6	64
27	To label or not to label: Applications of quantitative proteomics in neuroscience research. Proteomics, 2012, 12, 736-747.	2.2	60
28	Human Cerebral Organoids and Fetal Brain Tissue Share Proteomic Similarities. Frontiers in Cell and Developmental Biology, 2019, 7, 303.	3.7	58
29	Quantitative proteomics for investigating psychiatric disorders. Proteomics - Clinical Applications, 2011, 5, 38-49.	1.6	57
30	The role of proteomics in depression research. European Archives of Psychiatry and Clinical Neuroscience, 2010, 260, 499-506.	3.2	54
31	Identification of a blood-based biological signature in subjects with psychiatric disorders prior to clinical manifestation. World Journal of Biological Psychiatry, 2012, 13, 627-632.	2.6	50
32	Different apolipoprotein E, apolipoprotein A1 and prostaglandin-H2 D-isomerase levels in cerebrospinal fluid of schizophrenia patients and healthy controls. World Journal of Biological Psychiatry, 2010, 11, 719-728.	2.6	47
33	The use of ASB-14 in combination with CHAPS is the best for solubilization of human brain proteins for two-dimensional gel electrophoresis. Briefings in Functional Genomics & Proteomics, 2007, 6, 70-75.	3.8	46
34	The overexpression of a single oncogene (ERBB2/HER2) alters the proteomic landscape of extracellular vesicles. Proteomics, 2014, 14, 1472-1479.	2.2	46
35	Clozapine promotes glycolysis and myelin lipid synthesis in cultured oligodendrocytes. Frontiers in Cellular Neuroscience, 2014, 8, 384.	3.7	45
36	Synaptosomal Proteome of the Orbitofrontal Cortex from Schizophrenia Patients Using Quantitative Label-Free and iTRAQ-Based Shotgun Proteomics. Journal of Proteome Research, 2017, 16, 4481-4494.	3.7	44

#	Article	IF	CITATIONS
37	Transcriptome of iPSC-derived neuronal cells reveals a module of co-expressed genes consistently associated with autism spectrum disorder. Molecular Psychiatry, 2021, 26, 1589-1605.	7.9	44
38	Isolation and functional characterization of a new acidic PLA2 Ba SpII RP4 of the Bothrops alternatus snake venom from Argentina. Toxicon, 2010, 56, 64-74.	1.6	40
39	Toluene gas phase biofiltration by Paecilomyces lilacinus and isolation and identification of a hydrophobin protein produced thereof. Applied Microbiology and Biotechnology, 2008, 80, 147-54.	3.6	39
40	Increased stress reactivity is associated with reduced hippocampal activity and neuronal integrity along with changes in energy metabolism. European Journal of Neuroscience, 2012, 35, 412-422.	2.6	38
41	Microbiota-derived short-chain fatty acids do not interfere with SARS-CoV-2 infection of human colonic samples. Gut Microbes, 2021, 13, 1-9.	9.8	38
42	The protein interactome of collapsin response mediator proteinâ€⊋ (CRMP2/DPYSL2) reveals novel partner proteins in brain tissue. Proteomics - Clinical Applications, 2015, 9, 817-831.	1.6	37
43	Novel Treatment Strategies Targeting Myelin and Oligodendrocyte Dysfunction in Schizophrenia. Frontiers in Psychiatry, 2020, 11, 379.	2.6	37
44	Is the word â€~biomarker' being properly used by proteomics research in neuroscience?. European Archives of Psychiatry and Clinical Neuroscience, 2010, 260, 561-562.	3.2	36
45	Proteome analyses of cultured astrocytes treated with MK-801 and clozapine: similarities with schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 2011, 261, 217-228.	3.2	36
46	Characterization of the human serum depletome by labelâ€free shotgun proteomics. Journal of Separation Science, 2011, 34, 1621-1626.	2.5	36
47	LC-MSE, Multiplex MS/MS, Ion Mobility, and Label-Free Quantitation in Clinical Proteomics. Methods in Molecular Biology, 2017, 1546, 57-73.	0.9	36
48	MK-801 treatment affects glycolysis in oligodendrocytes more than in astrocytes and neuronal cells: insights for schizophrenia. Frontiers in Cellular Neuroscience, 2015, 09, 180.	3.7	35
49	Making Sense of Blood-Based Proteomics and Metabolomics in Psychiatric Research. International Journal of Neuropsychopharmacology, 2016, 19, pyv138.	2.1	35
50	Effect of MK-801 and Clozapine on the Proteome of Cultured Human Oligodendrocytes. Frontiers in Cellular Neuroscience, 2016, 10, 52.	3.7	35
51	Psychiatric disorders biochemical pathways unraveled by human brain proteomics. European Archives of Psychiatry and Clinical Neuroscience, 2017, 267, 3-17.	3.2	35
52	Consensus paper of the WFSBP Task Force on Biological Markers: Criteria for biomarkers and endophenotypes of schizophrenia, part III: Molecular mechanisms. World Journal of Biological Psychiatry, 2017, 18, 330-356.	2.6	33
53	The Nuclear Proteome of White and Gray Matter from Schizophrenia Postmortem Brains. Molecular Neuropsychiatry, 2017, 3, 37-52.	2.9	32
54	Proteomic Technologies for Biomarker Studies in Psychiatry. International Review of Neurobiology, 2011, 101, 65-94.	2.0	31

#	Article	IF	CITATIONS
55	The application of selective reaction monitoring confirms dysregulation of glycolysis in a preclinical model of schizophrenia. BMC Research Notes, 2012, 5, 146.	1.4	31
56	Biomarkers for Psychiatric Disorders: Where Are We Standing?. Disease Markers, 2013, 35, 1-2.	1.3	31
57	Ten years of proteomics in multiple sclerosis. Proteomics, 2014, 14, 467-480.	2.2	31
58	Enabling point-of-care testing and personalized medicine for schizophrenia. NPJ Schizophrenia, 2017, 3, 1.	3.6	30
59	Blood plasma/IgG N-glycome biosignatures associated with major depressive disorder symptom severity and the antidepressant response. Scientific Reports, 2018, 8, 179.	3.3	30
60	Proteomics Tackling Schizophrenia as a Pathway Disorder. Schizophrenia Bulletin, 2012, 38, 1107-1108.	4.3	28
61	Proteomic approaches to unravel the complexity of schizophrenia. Expert Review of Proteomics, 2012, 9, 97-108.	3.0	28
62	Affinity Depletion of Plasma and Serum for Mass Spectrometry-Based Proteome Analysis. Methods in Molecular Biology, 2013, 1002, 1-11.	0.9	28
63	Shotgun Mass Spectrometry Workflow Combining IEF and LC-MALDI-TOF/TOF. Protein Journal, 2010, 29, 99-102.	1.6	27
64	The emergence of point-of-care blood-based biomarker testing for psychiatric disorders: enabling personalized medicine. Biomarkers in Medicine, 2016, 10, 431-443.	1.4	26
65	Abnormalities in Metabolism and Hypothalamic–Pituitary–Adrenal Axis Function in Schizophrenia. International Review of Neurobiology, 2011, 101, 145-168.	2.0	24
66	Differential expression of HINT1 in schizophrenia brain tissue. European Archives of Psychiatry and Clinical Neuroscience, 2012, 262, 167-172.	3.2	24
67	The human oligodendrocyte proteome. Proteomics, 2013, 13, 3548-3553.	2.2	24
68	Drug repositioning for psychiatric and neurological disorders through a network medicine approach. Translational Psychiatry, 2020, 10, 141.	4.8	24
69	Biological pathways modulated by antipsychotics in the blood plasma of schizophrenia patients and their association to a clinical response. NPJ Schizophrenia, 2015, 1, 15050.	3.6	23
70	Characterizing the proteome of the human dorsolateral prefrontal cortex by shotgun mass spectrometry. Proteomics, 2011, 11, 2347-2353.	2.2	22
71	Blood Mononuclear Cell Proteome Suggests Integrin and Ras Signaling as Critical Pathways for Antidepressant Treatment Response. Biological Psychiatry, 2014, 76, e15-e17.	1.3	22
72	Differential proteome and phosphoproteome may impact cell signaling in the corpus callosum of schizophrenia patients. Schizophrenia Research, 2016, 177, 70-77.	2.0	22

DANIEL MARTINS-DE-SOUZA

#	Article	IF	CITATIONS
73	Peptidomic analysis of the anterior temporal lobe and corpus callosum from schizophrenia patients. Journal of Proteomics, 2017, 151, 97-105.	2.4	22
74	Proteomics as a Tool for Understanding Schizophrenia. Clinical Psychopharmacology and Neuroscience, 2011, 9, 95-101.	2.0	22
75	Shotgun mass spectrometry analysis of the human thalamus proteome. Journal of Separation Science, 2009, 32, 1231-1236.	2.5	21
76	Neurotoxic, Myotoxic and Cytolytic Activities of the New Basic PLA2 Isoforms BmjeTX-I and BmjeTX-II Isolated from the Bothrops marajoensis (Marajó Lancehead) Snake Venom. Protein Journal, 2010, 29, 103-113.	1.6	21
77	Blood-Based Lipidomics Approach to Evaluate Biomarkers Associated With Response to Olanzapine, Risperidone, and Quetiapine Treatment in Schizophrenia Patients. Frontiers in Psychiatry, 2018, 9, 209.	2.6	21
78	Quantitative Subcellular Proteomics of the Orbitofrontal Cortex of Schizophrenia Patients. Journal of Proteome Research, 2019, 18, 4240-4253.	3.7	21
79	Structural and functional characterization of brazilitoxins II and III (BbTX-II and -III), two myotoxins from the venom of Bothrops brazili snake. Toxicon, 2009, 54, 818-827.	1.6	20
80	Clinical use of phosphorylated proteins in blood serum analysed by immobilised metal ion affinity chromatography and mass spectrometry. Journal of Proteomics, 2012, 76, 36-42.	2.4	20
81	Biological and biochemical characterization of two new PLA2 isoforms Cdc-9 and Cdc-10 from Crotalus durissus cumanensis snake venom. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2010, 151, 66-74.	2.6	19
82	Biochemical and pharmacological characterization of PhTX-I a new myotoxic phospholipase A2 isolated from Porthidium hyoprora snake venom. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2011, 154, 108-119.	2.6	19
83	Proteomic profiling in schizophrenia: enabling stratification for more effective treatment. Genome Medicine, 2013, 5, 25.	8.2	19
84	The untiring search for the most complete proteome representation: reviewing the methods. Briefings in Functional Genomics & Proteomics, 2008, 7, 312-321.	3.8	18
85	Proteomic changes induced by anaesthesia and muscle relaxant treatment prior to electroconvulsive therapy. Proteomics - Clinical Applications, 2011, 5, 644-649.	1.6	18
86	Proteome analysis of spinal cord during the clinical course of monophasic experimental autoimmune encephalomyelitis. Proteomics, 2012, 12, 2656-2662.	2.2	18
87	S100B is downregulated in the nuclear proteome of schizophrenia corpus callosum. European Archives of Psychiatry and Clinical Neuroscience, 2014, 264, 311-316.	3.2	18
88	Changes in the blood plasma lipidome associated with effective or poor response to atypical antipsychotic treatments in schizophrenia patients. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 101, 109945.	4.8	18
89	Xylella fastidiosa disturbs nitrogen metabolism and causes a stress response in sweet orange Citrus sinensis cv. Pera. Journal of Experimental Botany, 2007, 58, 2733-2744.	4.8	17
90	Structural and pharmacological characterization of the crotamine isoforms III-4 (MYX4_CROCu) and III-7 (MYX7_CROCu) isolated from the Crotalus durissus cumanensis venom. Toxicon, 2010, 55, 1443-1452.	1.6	17

#	Article	IF	CITATIONS
91	Functional and structural characterization of a new serine protease with thrombin-like activity TLBan from Bothrops andianus (Andean Lancehead) snake venom. Toxicon, 2012, 59, 231-240.	1.6	17
92	Plasma fibrinogen: now also an antidepressant response marker?. Translational Psychiatry, 2014, 4, e352-e352.	4.8	17
93	MK-801-Treated Oligodendrocytes as a Cellular Model to Study Schizophrenia. Advances in Experimental Medicine and Biology, 2017, 974, 269-277.	1.6	17
94	Characterization of a Protein Interactome by Co-Immunoprecipitation and Shotgun Mass Spectrometry. Methods in Molecular Biology, 2017, 1546, 223-234.	0.9	17
95	Protein disulfide isomerase plasma levels in healthy humans reveal proteomic signatures involved in contrasting endothelial phenotypes. Redox Biology, 2019, 22, 101142.	9.0	17
96	A Guide to Mass Spectrometry-Based Quantitative Proteomics. Methods in Molecular Biology, 2019, 1916, 3-39.	0.9	17
97	Leucine-Rich Diet Modulates the Metabolomic and Proteomic Profile of Skeletal Muscle during Cancer Cachexia. Cancers, 2020, 12, 1880.	3.7	17
98	Digging deeper in the proteome of different regions from schizophrenia brains. Journal of Proteomics, 2020, 223, 103814.	2.4	17
99	Proteome profiling of peripheral mononuclear cells from human blood. Proteomics, 2013, 13, 893-897.	2.2	16
100	Deciphering the Human Brain Proteome: Characterization of the Anterior Temporal Lobe and Corpus Callosum As Part of the Chromosome 15-centric Human Proteome Project. Journal of Proteome Research, 2014, 13, 147-157.	3.7	16
101	Modulation of cognition and neuronal plasticity in gain- and loss-of-function mouse models of the schizophrenia risk gene Tcf4. Translational Psychiatry, 2020, 10, 343.	4.8	16
102	Structural and Biological Characterization of Two Crotamine Isoforms IV-2 and IV-3 Isolated from the Crotalus durissus cumanensis Venom. Protein Journal, 2007, 26, 533-540.	1.6	15
103	Purification and Characterization of a New Weak Hemorrhagic Metalloproteinase BmHF-1 from Bothrops marajoensis Snake Venom. Protein Journal, 2010, 29, 407-416.	1.6	15
104	Characterization of the human primary visual cortex and cerebellum proteomes using shotgun mass spectrometryâ€dataâ€independent analyses. Proteomics, 2012, 12, 500-504.	2.2	15
105	Elemental fingerprinting of schizophrenia patient blood plasma before and after treatment with antipsychotics. European Archives of Psychiatry and Clinical Neuroscience, 2018, 268, 565-570.	3.2	15
106	Ion Mobilityâ€Enhanced Dataâ€Independent Acquisitions Enable a Deep Proteomic Landscape of Oligodendrocytes. Proteomics, 2017, 17, 1700209.	2.2	15
107	Structural and functional characterization of myotoxin, Cr-IV 1, a phospholipase A2 D49 from the venom of the snake Calloselasma rhodostoma. Biologicals, 2008, 36, 168-176.	1.4	14
108	Proteomics and molecular tools for unveiling missing links in the biochemical understanding of schizophrenia. Proteomics - Clinical Applications, 2016, 10, 1148-1158.	1.6	14

#	Article	IF	CITATIONS
109	Proteomic Differences in Blood Plasma Associated with Antidepressant Treatment Response. Frontiers in Molecular Neuroscience, 2017, 10, 272.	2.9	14
110	Ubiquitin–proteasome system, lipid metabolism and DNA damage repair are triggered by antipsychotic medication in human oligodendrocytes: implications in schizophrenia. Scientific Reports, 2020, 10, 12655.	3.3	14
111	Proteome analysis of human dorsolateral prefrontal cortex using shotgun mass spectrometry. Journal of Separation Science, 2008, 31, 3122-3126.	2.5	13
112	The need for phosphoproteomic approaches in psychiatric research. Journal of Psychiatric Research, 2011, 45, 1404-1406.	3.1	13
113	Differential phosphorylation of serum proteins reflecting inflammatory changes in schizophrenia patients. European Archives of Psychiatry and Clinical Neuroscience, 2012, 262, 453-455.	3.2	13
114	Employing proteomics to unravel the molecular effects of antipsychotics and their role in schizophrenia. Proteomics - Clinical Applications, 2016, 10, 442-455.	1.6	13
115	Cannabinoids and glial cells: possible mechanism to understand schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 2018, 268, 727-737.	3.2	13
116	Unveiling alterative splice diversity from human oligodendrocyte proteome data. Journal of Proteomics, 2017, 151, 293-301.	2.4	12
117	Identifying Biomarker Candidates in the Blood Plasma or Serum Proteome. Advances in Experimental Medicine and Biology, 2017, 974, 193-203.	1.6	12
118	Biochemical Pathways Triggered by Antipsychotics in Human Oligodendrocytes: Potential of Discovering New Treatment Targets. Frontiers in Pharmacology, 2019, 10, 186.	3.5	12
119	Brain Quantitative Proteomics Combining GeLC-MS and Isotope-Coded Protein Labeling (ICPL). Methods in Molecular Biology, 2014, 1156, 175-185.	0.9	12
120	Analysis of the rat hypothalamus proteome by dataâ€independent labelâ€free <scp>LC</scp> â€ <scp>MS</scp> / <scp>MS</scp> . Proteomics, 2012, 12, 3386-3392.	2.2	11
121	Proteomic Similarities Between Heterozygous Reeler Mice and Schizophrenia. Biological Psychiatry, 2013, 74, e5-e10.	1.3	11
122	Decrease of serum S100B during an oral glucose tolerance test correlates inversely with the insulin response. Psychoneuroendocrinology, 2014, 39, 33-38.	2.7	11
123	Pioneering ambient mass spectrometry imaging in psychiatry: Potential for new insights into schizophrenia. Schizophrenia Research, 2016, 177, 67-69.	2.0	11
124	DIA is not a new mass spectrometry acquisition method. Proteomics, 2017, 17, 1700017.	2.2	11
125	Proteomic Markers for Depression. Advances in Experimental Medicine and Biology, 2019, 1118, 191-206.	1.6	11
126	A proteomic signature associated to atypical antipsychotic response in schizophrenia patients: a pilot study. European Archives of Psychiatry and Clinical Neuroscience, 2020, 270, 127-134.	3.2	11

#	Article	IF	CITATIONS
127	Depletion of Highly Abundant Proteins of the Human Blood Plasma: Applications in Proteomics Studies of Psychiatric Disorders. Methods in Molecular Biology, 2017, 1546, 195-204.	0.9	11
128	Nootropic effects of LSD: Behavioral, molecular and computational evidence. Experimental Neurology, 2022, 356, 114148.	4.1	11
129	Postâ€ŧranslational modification of the RhoGTPase activating protein 21, ARHGAP21, by SUMO2/3. FEBS Letters, 2012, 586, 3522-3528.	2.8	10
130	Using Mass Spectrometry-Based Peptidomics to understand the Brain and Disorders such as Parkinson's Disease and Schizophrenia. Current Topics in Medicinal Chemistry, 2014, 14, 369-381.	2.1	10
131	Comprehending depression through proteomics. International Journal of Neuropsychopharmacology, 2012, 15, 1373-1374.	2.1	9
132	Testes sanguÃneos de biomarcadores para diagnóstico e tratamento de desordens mentais: foco em esquizofrenia. Revista De Psiquiatria Clinica, 2013, 40, 02-09.	0.6	9
133	Ovariectomy modifies lipid metabolism of retroperitoneal white fat in rats: a proteomic approach. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E427-E437.	3.5	9
134	Comprehensive Shotgun Proteomic Analyses of Oligodendrocytes Using Ion Mobility and Data-Independent Acquisition. Neuromethods, 2017, , 65-74.	0.3	9
135	The state of the art of nanopsychiatry for schizophrenia diagnostics and treatment. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 28, 102222.	3.3	9
136	Comparative analysis of two-dimensional electrophoresis maps (2-DE) of Helicobacter pylori from Brazilian patients with chronic gastritis and duodenal ulcer: a preliminary report. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2006, 48, 175-177.	1.1	8
137	Combining Patient-Reprogrammed Neural Cells and Proteomics as a Model to Study Psychiatric Disorders. Advances in Experimental Medicine and Biology, 2017, 974, 279-287.	1.6	8
138	Co-immunoprecipitation for Deciphering Protein Interactomes. Advances in Experimental Medicine and Biology, 2017, 974, 229-236.	1.6	8
139	Blood plasma proteomic modulation induced by olanzapine and risperidone in schizophrenia patients. Journal of Proteomics, 2020, 224, 103813.	2.4	8
140	An overview of the human brain myelin proteome and differences associated with schizophrenia. World Journal of Biological Psychiatry, 2021, 22, 271-287.	2.6	8
141	Human disease biomarker panels through systems biology. Biophysical Reviews, 2021, 13, 1179-1190.	3.2	8
142	Proteomics is not only a biomarker discovery tool. Proteomics - Clinical Applications, 2009, 3, 1136-1139.	1.6	7
143	Purification and inflammatory edema induced by two PLA2 (Anch TX-I and Anch TX-II) from sea anemone Anthothoe chilensis (Actiniaria: Sagartiidae). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2012, 161, 170-177.	1.6	7
144	Application of Proteomic Techniques for Improved Stratification and Treatment of Schizophrenia Patients. Advances in Experimental Medicine and Biology, 2017, 974, 3-19.	1.6	7

DANIEL MARTINS-DE-SOUZA

#	Article	IF	CITATIONS
145	The Application of Multiplex Biomarker Techniques for Improved Stratification and Treatment of Schizophrenia Patients. Methods in Molecular Biology, 2017, 1546, 19-35.	0.9	7
146	A Complete Proteomic Workflow to Study Brain-Related Disorders via Postmortem Tissue. Methods in Molecular Biology, 2019, 1916, 319-328.	0.9	7
147	Effects on Glial Cell Glycolysis in Schizophrenia: An Advanced Aging Phenotype?. Advances in Experimental Medicine and Biology, 2019, 1178, 25-38.	1.6	7
148	Absence of Classical Heat Shock Response in the Citrus Pathogen Xylella fastidiosa. Current Microbiology, 2007, 54, 119-123.	2.2	6
149	Characterization of the C-terminal half of human juvenile myoclonic epilepsy protein EFHC1: Dimer formation blocks Ca2+ and Mg2+ binding to its functional EF-hand. Archives of Biochemistry and Biophysics, 2008, 477, 131-138.	3.0	6
150	Os efeitos do estresse na função do eixo hipotalâmico-pituitário-adrenal em indivÃduos com esquizofrenia. Revista De Psiquiatria Clinica, 2013, 40, 20-27.	0.6	6
151	Proteomics and Lipidomics in the Elucidation of Endocannabinoid Signaling in Healthy and Schizophrenia Brains. Proteomics, 2018, 18, e1700270.	2.2	6
152	Human leukemia cells (HL-60) proteomic and biological signatures underpinning cryo-damage are differentially modulated by novel cryo-additives. GigaScience, 2019, 8, .	6.4	6
153	Proteomic biomarkers for psychiatric disorders: a progress update. Biomarkers in Medicine, 2012, 6, 189-192.	1.4	5
154	Identification of Protein Biomarkers in Human Serum Using iTRAQ and Shotgun Mass Spectrometry. Methods in Molecular Biology, 2013, 1061, 291-307.	0.9	5
155	Is clinical proteomics heading towards to "bench to bedside�. Translational Proteomics, 2013, 1, 53-56.	1.2	5
156	Application of iTRAQ Shotgun Proteomics for Measurement of Brain Proteins in Studies of Psychiatric Disorders. Advances in Experimental Medicine and Biology, 2017, 974, 219-227.	1.6	5
157	Linking proteomic alterations in schizophrenia hippocampus to NMDAr hypofunction in human neurons and oligodendrocytes. European Archives of Psychiatry and Clinical Neuroscience, 2021, 271, 1579-1586.	3.2	5
158	Molecular Mechanisms Associated with Antidepressant Treatment on Major Depression. Complex Psychiatry, 2021, 7, 49-59.	0.9	5
159	Single-Cell RNA Sequencing and Its Applications in the Study of Psychiatric Disorders. Biological Psychiatry Global Open Science, 2023, 3, 329-339.	2.2	5
160	Blood plasma high abundant protein depletion unintentionally carries over 100 proteins. Separation Science Plus, 2019, 2, 449-456.	0.6	4
161	14-3-3 proteins at the crossroads of neurodevelopment and schizophrenia. World Journal of Biological Psychiatry, 2022, 23, 14-32.	2.6	4
162	Simultaneous Two-Dimensional Difference Gel Electrophoresis (2D-DIGE) Analysis of Two Distinct Proteomes. Methods in Molecular Biology, 2017, 1546, 205-212.	0.9	4

#	Article	IF	CITATIONS
163	Biological Applications for LC-MS-Based Proteomics. Advances in Experimental Medicine and Biology, 2021, 1336, 17-29.	1.6	4
164	Translational strategies to schizophrenia from a proteomic perspective. Translational Neuroscience, 2012, 3, .	1.4	3
165	Human brain proteome in health and disease. Proteomics - Clinical Applications, 2016, 10, 1147-1147.	1.6	3
166	Two-Dimensional Gel Electrophoresis: A Reference Protocol. Advances in Experimental Medicine and Biology, 2017, 974, 175-182.	1.6	3
167	Maturation of a Human Oligodendrocyte Cell Line. Methods in Molecular Biology, 2019, 1916, 113-121.	0.9	3
168	Proteomics for Target Identification in Psychiatric and Neurodegenerative Disorders. Advances in Experimental Medicine and Biology, 2021, 1286, 251-264.	1.6	3
169	Cannabidiol Displays Proteomic Similarities to Antipsychotics in Cuprizone-Exposed Human Oligodendrocytic Cell Line MO3.13. Frontiers in Molecular Neuroscience, 2021, 14, 673144.	2.9	3
170	Proteomic Analysis of Rat Hippocampus for Studies of Cognition and Memory Loss with Aging. Methods in Molecular Biology, 2020, 2138, 407-417.	0.9	3
171	Brazil: The Country of Proteomics. Proteomics, 2012, 12, 2599-2600.	2.2	2
172	Key players in neurodegenerative disorders in focus—New insights into the proteomic profile of Alzheimer's disease, schizophrenia, ALS, and multiple sclerosis—24th HUPO BPP Workshop. Proteomics, 2016, 16, 1047-1050.	2.2	2
173	2DE Gels: A Story of Love and Hate in Proteomics. Proteomics, 2018, 18, e1700472.	2.2	2
174	Mass spectrometry-based proteomics to understand schizophrenia. Brazilian Journal of Analytical Chemistry, 2020, 7, 13-17.	0.5	2
175	Cannabinoids modulate proliferation, differentiation, and migration signaling pathways in oligodendrocytes. European Archives of Psychiatry and Clinical Neuroscience, 2022, 272, 1311-1323.	3.2	2
176	Zika Virus Strains and Dengue Virus Induce Distinct Proteomic Changes in Neural Stem Cells and Neurospheres. Molecular Neurobiology, 2022, 59, 5549-5563.	4.0	2
177	Proteome analysis of lumbar spinal cord from rats submitted to peripheral lesion during neonatal period. Journal of Neural Transmission, 2010, 117, 689-693.	2.8	1
178	The Usage of Codons Which are Similar to Stop Codons in the Genomes of Xylella fastidiosa and Xanthomonas citri. Current Microbiology, 2011, 62, 1090-1095.	2.2	1
179	Brain Proteomics. Proteomics - Clinical Applications, 2015, 9, 795-795.	1.6	1
180	Selective Reaction Monitoring Mass Spectrometry for Quantitation of Glycolytic Enzymes in Postmortem Brain Samples. Advances in Experimental Medicine and Biology, 2017, 974, 205-212.	1.6	1

#	Article	IF	CITATIONS
181	Application of Proteomic Approaches to Accelerate Drug Development for Psychiatric Disorders. Advances in Experimental Medicine and Biology, 2017, 974, 69-84.	1.6	1
182	LC-MSE for Qualitative and Quantitative Proteomic Studies of Psychiatric Disorders. Advances in Experimental Medicine and Biology, 2017, 974, 115-129.	1.6	1
183	Modeling Schizophrenia with Human Stem Cells. , 2018, , 13-26.		1
184	Evidence of macrophage modulation in the mouse pubic symphysis remodeling during the end of first pregnancy and postpartum. Scientific Reports, 2020, 10, 12403.	3.3	1
185	Human Blood Plasma Investigation Employing 2D UPLC-UDMSE Data-Independent Acquisition Proteomics. Methods in Molecular Biology, 2021, 2259, 153-165.	0.9	1
186	A glimpse on the architecture of hnRNP C1/C2 interaction network in cultured oligodendrocytes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140711.	2.3	1
187	Liquid Chromatography Tandem Mass Spectrometry Analysis of Proteins Associated with Age-Related Disorders in Human Pituitary Tissue. Methods in Molecular Biology, 2020, 2138, 263-276.	0.9	1
188	Using Co-immunoprecipitation and Shotgun Mass Spectrometry for Protein-Protein Interaction Identification in Cultured Human Oligodendrocytes. Neuromethods, 2019, , 37-47.	0.3	1
189	Translational strategies to schizophrenia from a proteomic perspective. , 0, .		1
190	RNA Biomarkers in Schizophrenia. , 2008, , 97-127.		1
191	What Does Proteomics Tell Us About Schizophrenia?. , 2011, , 345-366.		1
192	Proteomic Characterization of the Brain and Cerebrospinal Fluid of Schizophrenia Patients. Advances in Biological Psychiatry, 2014, , 1-1.	0.2	0
193	OLIGODENDROCYTE-TARGETED PROTEOMICS: INSIGHTS ABOUT SCHIZOPHRENIA. Schizophrenia Research, 2014, 153, S10.	2.0	Ο
194	Deciphering the biochemistry and identifying biomarkers to multiple sclerosis. Proteomics, 2015, 15, 3281-3282.	2.2	0
195	Dunn's effect over Brazilian proteomics. Proteomics, 2016, 16, 2845-2846.	2.2	Ο
196	A Selected Reaction Monitoring Mass Spectrometry Protocol for Validation of Proteomic Biomarker Candidates in Studies of Psychiatric Disorders. Advances in Experimental Medicine and Biology, 2017, 974, 213-218.	1.6	0
197	What Have Proteomic Studies Taught Us About Novel Drug Targets in Autism?. Advances in Experimental Medicine and Biology, 2017, 974, 49-67.	1.6	Ο
198	84. Cerebral Organoids-Derived Astrocytes to Understanding Schizophrenia. Biological Psychiatry, 2018, 83, S35.	1.3	0

#	Article	IF	CITATIONS
199	13.3 EFFECTS OF CANNABINOIDS ON A HUMAN OLIGODENDROCYTE CULTURE: IMPLICATIONS FOR SCHIZOPHRENIA. Schizophrenia Bulletin, 2018, 44, S22-S22.	4.3	Ο
200	DIA-MSE to Study Microglial Function in. Methods in Molecular Biology, 2021, 2228, 341-352.	0.9	0
201	Addendum: Cruz, B., et al. Leucine-Rich Diet Modulates the Metabolomic and Proteomic Profile of Skeletal Muscle during Cancer Cachexia. Cancers 2020, 12, 1880. Cancers, 2021, 13, 880.	3.7	0
202	Genetic and Proteomic Studies in Schizophrenia. , 2010, , 193-218.		0
203	Análise proteômica da esquizofrenia. Revista De Psiquiatria Clinica, 2013, 40, 16-19.	0.6	0
204	Proteome analysis of neural stem cells and neurospheres infected with Zika Virus. , 0, , .		0
205	BrJAC pays tribute to Prof. Dr. José Camillo Novello, a pioneer researcher in proteomics in Brazil and a gentle advisor. Brazilian Journal of Analytical Chemistry, 2022, 9, .	0.5	Ο