
Yong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8902141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conservative Fragments in Bacterial 16S rRNA Genes and Primer Design for 16S Ribosomal DNA Amplicons in Metagenomic Studies. PLoS ONE, 2009, 4, e7401.	2.5	960
2	Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics, 2016, 17, 135.	2.6	374
3	Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME Journal, 2011, 5, 650-664.	9.8	265
4	Atroposelective Synthesis of Axially Chiral Biaryldiols via Organocatalytic Arylation of 2-Naphthols. Journal of the American Chemical Society, 2015, 137, 15062-15065.	13.7	242
5	Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing. ISME Journal, 2011, 5, 507-518.	9.8	151
6	Optimal Eukaryotic 18S and Universal 16S/18S Ribosomal RNA Primers and Their Application in a Study of Symbiosis. PLoS ONE, 2014, 9, e90053.	2.5	104
7	Spatial and Species Variations in Bacterial Communities Associated with Corals from the Red Sea as Revealed by Pyrosequencing. Applied and Environmental Microbiology, 2012, 78, 7173-7184.	3.1	97
8	Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. ISME Journal, 2021, 15, 2366-2378.	9.8	93
9	Symbiotic Adaptation Drives Genome Streamlining of the Cyanobacterial Sponge Symbiont " <i>Candidatus</i> Synechococcus spongiarum†MBio, 2014, 5, e00079-14.	4.1	83
10	Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfurâ€oxidizing bacterium in sponge. Environmental Microbiology, 2014, 16, 3548-3561.	3.8	76
11	Draft Genome of Scalindua rubra, Obtained from the Interface Above the Discovery Deep Brine in the Red Sea, Sheds Light on Potential Salt Adaptation Strategies in Anammox Bacteria. Microbial Ecology, 2017, 74, 1-5.	2.8	73
12	Microbial Sulfur Cycle in Two Hydrothermal Chimneys on the Southwest Indian Ridge. MBio, 2014, 5, e00980-13.	4.1	71
13	Phylogenomics of expanding uncultured environmental Tenericutes provides insights into their pathogenicity and evolutionary relationship with Bacilli. BMC Genomics, 2020, 21, 408.	2.8	65
14	Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns. Applied and Environmental Microbiology, 2013, 79, 3425-3437.	3.1	57
15	Pathway mining-based integration of critical enzyme parts for de novo biosynthesis of steviolglycosides sweetener in Escherichia coli. Cell Research, 2016, 26, 258-261.	12.0	57
16	The mitochondrial genome of the Basidiomycete fungus <i>Pleurotus ostreatus</i> (oyster) Tj ETQq0 0 0 rgBT /Ov	verlock 10	Tf ₅ 30 142 Tc

17	In situ environment rather than substrate type dictates microbial community structure of biofilms in a cold seep system. Scientific Reports, 2014, 4, 3587.	3.3	49
18	Genomic characterization of symbiotic mycoplasmas from the stomach of deepâ€sea isopod <i>bathynomus</i> sp. Environmental Microbiology, 2016, 18, 2646-2659.	3.8	49

#	Article	IF	CITATIONS
19	Study of monocyte membrane proteome perturbation during lipopolysaccharideâ€induced tolerance using iTRAQâ€based quantitative proteomic approach. Proteomics, 2010, 10, 2780-2789.	2.2	45
20	Species sorting during biofilm assembly by artificial substrates deployed in a cold seep system. Scientific Reports, 2015, 4, 6647.	3.3	43
21	<i>In situ</i> metaâ€omic insights into the community compositions and ecological roles of hadal microbes in the Mariana Trench. Environmental Microbiology, 2019, 21, 4092-4108.	3.8	40
22	Effect of Copper Treatment on the Composition and Function of the Bacterial Community in the Sponge <i>Haliclona cymaeformis</i> . MBio, 2014, 5, e01980.	4.1	39
23	Genomics insights into ecotype formation of ammoniaâ€oxidizing archaea in the deep ocean. Environmental Microbiology, 2019, 21, 716-729.	3.8	39
24	The Enigmatic Genome of an Obligate Ancient Spiroplasma Symbiont in a Hadal Holothurian. Applied and Environmental Microbiology, 2018, 84, .	3.1	38
25	Pyrosequencing Reveals the Microbial Communities in the Red Sea Sponge Carteriospongia foliascens and Their Impressive Shifts in Abnormal Tissues. Microbial Ecology, 2014, 68, 621-632.	2.8	37
26	New Microbial Lineages Capable of Carbon Fixation and Nutrient Cycling in Deep-Sea Sediments of the Northern South China Sea. Applied and Environmental Microbiology, 2019, 85, .	3.1	36
27	Long inverted repeats in eukaryotic genomes: Recombinogenic motifs determine genomic plasticity. FEBS Letters, 2006, 580, 1277-1284.	2.8	35
28	Hydrothermally generated aromatic compounds are consumed by bacteria colonizing in Atlantis II Deep of the Red Sea. ISME Journal, 2011, 5, 1652-1659.	9.8	34
29	Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses. Scientific Reports, 2013, 3, 3180.	3.3	31
30	Microbial ecology of sulfur cycling near the sulfate–methane transition of deepâ€sea cold seep sediments. Environmental Microbiology, 2021, 23, 6844-6858.	3.8	31
31	Microbiomes in the Challenger Deep slope and bottom-axis sediments. Nature Communications, 2022, 13, 1515.	12.8	31
32	Diversity and distribution of eukaryotic microbes in and around a brine pool adjacent to the Thuwal cold seeps in the Red Sea. Frontiers in Microbiology, 2014, 5, 37.	3.5	30
33	Hadal water sampling by in situ microbial filtration and fixation (ISMIFF) apparatus. Deep-Sea Research Part I: Oceanographic Research Papers, 2019, 144, 132-137.	1.4	29
34	Genomic Characterization of a Novel Gut Symbiont From the Hadal Snailfish. Frontiers in Microbiology, 2019, 10, 2978.	3.5	29
35	Molecular Techniques Revealed Highly Diverse Microbial Communities in Natural Marine Biofilms on Polystyrene Dishes for Invertebrate Larval Settlement. Microbial Ecology, 2014, 68, 81-93.	2.8	28
36	Oxidative Weathering and Microbial Diversity of an Inactive Seafloor Hydrothermal Sulfide Chimney. Frontiers in Microbiology, 2017, 8, 1378.	3.5	28

#	Article	IF	CITATIONS
37	Deep Sequencing of Myxilla (Ectyomyxilla) methanophila, an Epibiotic Sponge on Cold-Seep Tubeworms, Reveals Methylotrophic, Thiotrophic, and Putative Hydrocarbon-Degrading Microbial Associations. Microbial Ecology, 2013, 65, 450-461.	2.8	25
38	Autotrophic Microbe Metagenomes and Metabolic Pathways Differentiate Adjacent Red Sea Brine Pools. Scientific Reports, 2013, 3, 1748.	3.3	25
39	Toward Understanding the Dynamics of Microbial Communities in an Estuarine System. PLoS ONE, 2014, 9, e94449.	2.5	24
40	Synchronized dynamics of bacterial nicheâ€specific functions during biofilm development in a cold seep brine pool. Environmental Microbiology, 2015, 17, 4089-4104.	3.8	24
41	The vertical distribution of prokaryotes in the surface sediment of Jiaolong cold seep at the northern South China Sea. Extremophiles, 2018, 22, 499-510.	2.3	24
42	In Silico Prediction of Two Classes of Honeybee Genes with CpG Deficiency or CpG Enrichment and Sorting According to Gene Ontology Classes. Journal of Molecular Evolution, 2009, 68, 700-705.	1.8	21
43	Pyrosequencing revealed shifts of prokaryotic communities between healthy and disease-like tissues of the Red Sea sponge <i>Crella cyathophora</i> . PeerJ, 2015, 3, e890.	2.0	20
44	A study on genomic distribution and sequence features of human long inverted repeats reveals specific intronic inverted repeats. FEBS Journal, 2009, 276, 1986-1998.	4.7	19
45	Periodic and Spatial Spreading of Alkanes and <i>Alcanivorax</i> Bacteria in Deep Waters of the Mariana Trench. Applied and Environmental Microbiology, 2019, 85, .	3.1	17
46	Metabolic diversification of anaerobic methanotrophic archaea in a deep-sea cold seep. Marine Life Science and Technology, 2020, 2, 431-441.	4.6	17
47	Luminescence dating of marine sediments from the Sea of Japan using quartz OSL and polymineral pIRIR signals of fine grains. Quaternary Geochronology, 2015, 30, 257-263.	1.4	16
48	Draft genome of an Aerophobetes bacterium reveals a facultative lifestyle in deep-sea anaerobic sediments. Science Bulletin, 2016, 61, 1176-1186.	9.0	16
49	Comparative analysis of the gut microbial communities between two dominant amphipods from the Challenger Deep, Mariana Trench. Deep-Sea Research Part I: Oceanographic Research Papers, 2019, 151, 103081.	1.4	16
50	Functional diversity of microbial communities in inactive seafloor sulfide deposits. FEMS Microbiology Ecology, 2021, 97, .	2.7	16
51	Toward understanding barnacle cementing by characterization of one cement protein-100kDa in Amphibalanus amphitrite. Biochemical and Biophysical Research Communications, 2018, 495, 969-975.	2.1	16
52	The Cyanobacteria-Dominated Sponge Dactylospongia elegans in the South China Sea: Prokaryotic Community and Metagenomic Insights. Frontiers in Microbiology, 2017, 8, 1387.	3.5	15
53	Metagenomic studies of SAR202 bacteria at the full-ocean depth in the Mariana Trench. Deep-Sea Research Part I: Oceanographic Research Papers, 2020, 165, 103396.	1.4	14
54	Phylogenomic Insights into Distribution and Adaptation of Bdellovibrionota in Marine Waters. Microorganisms, 2021, 9, 757.	3.6	14

#	Article	IF	CITATIONS
55	Multiple in situ Nucleic Acid Collections (MISNAC) From Deep-Sea Waters. Frontiers in Marine Science, 2020, 7, .	2.5	13
56	Microbial community changes along the active seepage site of one cold seep in the Red Sea. Frontiers in Microbiology, 2015, 6, 739.	3.5	12
57	Genomic differences within the phylum Marinimicrobia: From waters to sediments in the Mariana Trench. Marine Genomics, 2020, 50, 100699.	1.1	12
58	Comparative Transcriptomic Analysis Reveals Candidate Genes and Pathways Involved in Larval Settlement of the Barnacle Megabalanus volcano. International Journal of Molecular Sciences, 2017, 18, 2253.	4.1	11
59	Asgard archaea in the haima cold seep: Spatial distribution and genomic insights. Deep-Sea Research Part I: Oceanographic Research Papers, 2021, 170, 103489.	1.4	11
60	Molecular Characterization of a Novel N-Acetylneuraminate Lyase from a Deep-Sea Symbiotic Mycoplasma. Marine Drugs, 2018, 16, 80.	4.6	10
61	Bacterial Niche-Specific Genome Expansion Is Coupled with Highly Frequent Gene Disruptions in Deep-Sea Sediments. PLoS ONE, 2011, 6, e29149.	2.5	10
62	GC Content Increased at CpG Flanking Positions of Fish Genes Compared with Sea Squirt Orthologs as a Mechanism for Reducing Impact of DNA Methylation. PLoS ONE, 2008, 3, e3612.	2.5	9
63	Effect of polybrominated diphenyl ether (PBDE) treatment on the composition and function of the bacterial community in the sponge Haliclona cymaeformis. Frontiers in Microbiology, 2014, 5, 799.	3.5	9
64	An evaluation of multiple annealing and looping based genome amplification using a synthetic bacterial community. Acta Oceanologica Sinica, 2016, 35, 131-136.	1.0	8
65	Deinococcus planocerae sp. nov., isolated from a marine flatworm. Antonie Van Leeuwenhoek, 2017, 110, 811-817.	1.7	8
66	New species of the giant deepâ€sea isopod genus <i>Bathynomus</i> (Crustacea, Isopoda, Cirolanidae) from Hainan Island, South China Sea. Integrative Zoology, 2017, 12, 283-291.	2.6	7
67	Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea). PLoS ONE, 2015, 10, e0140766.	2.5	6
68	Assembly of plant communities in coastal wetlands—the role of saltcedar <i>Tamarix chinensis</i> during early succession. Journal of Plant Ecology, 2015, 8, 539-548.	2.3	5
69	Database for chicken full-length cDNAs. Physiological Genomics, 2007, 28, 141-145.	2.3	4
70	Discovery of a long inverted repeat in human POTE genes. Genomics, 2009, 94, 278-283.	2.9	4
71	Lirex: A Package for Identification of Long Inverted Repeats in Genomes. Genomics, Proteomics and Bioinformatics, 2017, 15, 141-146.	6.9	4
72	Unique tRNA gene profile suggests paucity of nucleotide modifications in anticodons of a deep-sea symbiotic Spiroplasma. Nucleic Acids Research, 2018, 46, 2197-2203.	14.5	4

#	Article	IF	CITATIONS
73	A novel bacterial phylum that participates in carbon and osmolyte cycling in the Challenger Deep sediments. Environmental Microbiology, 2020, 23, 3758-3772.	3.8	4
74	Artifactual pyrosequencing reads in multiple-displacement-amplified sediment metagenomes from the Red Sea. PeerJ, 2013, 1, e69.	2.0	4
75	Comparative Genomic Study Reveals a Transition from TA Richness in Invertebrates to GC Richness in Vertebrates at CpG Flanking Sites: An Indication for Context-Dependent Mutagenicity of Methylated CpG Sites. Genomics, Proteomics and Bioinformatics, 2008, 6, 144-154.	6.9	3
76	Roles of phenotypic and genetic characteristics in the social mating pattern of Silver-throated Tits (Aegithalos glaucogularis). Journal of Ornithology, 2015, 156, 687-697.	1.1	3
77	Rediscovery of the abyssal species Peniagone leander Pawson and Foell, 1986 (Holothuroidea:) Tj ETQq1 1 0.7843 Limnology, 2020, 38, 1319-1327.	814 rgBT / 1.3	Overlock 10 3
78	Acquisition of inverted GSTM exons by an intron of primate GSTM5 gene. Journal of Human Genetics, 2009, 54, 271-276.	2.3	2
79	Changing composition of microbial communities indicates seepage fluid difference of the Thuwal Seeps in the Red Sea. Antonie Van Leeuwenhoek, 2015, 108, 461-471.	1.7	2
80	Rediscovery of the hadal species Amblyops magnus Birstein & Tchindonova, 1958 (Crustacea:) Tj ETQqC	0.0 rgBT	/Qverlock 10
81	Deepest record of <i> Eucopia sculpticauda</i> (Crustacea: Lophogastrida: Eucopiidae) and the order, with new insights into the distribution and genetic diversity of the species. Bulletin of Marine Science, 2019, 95, 327-335.	0.8	2

82	"Unicorn from Hadesâ€ , a new genus of Mysidae (Malacostraca: Mysida) from the Mariana Trench, with a systematic analysis of the deep-sea mysids. Molecular Phylogenetics and Evolution, 2020, 143, 106666.	2.7	2
83	Carbon metabolism and adaptation of hyperalkaliphilic microbes in serpentinizing spring of Manleluag, the Philippines. Environmental Microbiology Reports, 2022, 14, 308-319.	2.4	2
84	Archive of bacterial community in anhydrite crystals from a deep-sea basin provides evidence of past oil-spilling in a benthic environment in the Red Sea. Biogeosciences, 2016, 13, 6405-6417.	3.3	1
85	Deep-Sea Carbonates Are a Reservoir of Fossil Microbes Previously Inhabiting Cold Seeps. Frontiers in Marine Science, 2021, 8, .	2.5	1
86	Conserved Regions in 16S Ribosome RNA Sequences and Primer Design for Studies of Environmental		1

⁸⁶ Microbes. , 2015, , 106-110.

6