Mohamed S Hasanin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8901744/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecofriendly green conversion of potato peel wastes to high productivity bacterial cellulose. Carbohydrate Polymers, 2019, 211, 75-83.	10.2	134
2	Ecofriendly novel synthesis of tertiary composite based on cellulose and myco-synthesized selenium nanoparticles: Characterization, antibiofilm and biocompatibility. International Journal of Biological Macromolecules, 2021, 175, 294-303.	7.5	108
3	One-pot synthesis of nanostructured CdS, CuS, and SnS by pulsed laser ablation in liquid environment and their antimicrobial activity. Optics and Laser Technology, 2020, 121, 105824.	4.6	99
4	Cadmium oxide/TEMPO-oxidized cellulose nanocomposites produced by pulsed laser ablation in liquid environment: Synthesis, characterization, and antimicrobial activity. Optics and Laser Technology, 2019, 120, 105744.	4.6	90
5	Green synthesis of bacterial cellulose/bioactive glass nanocomposites: Effect of glass nanoparticles on cellulose yield, biocompatibility and antimicrobial activity. International Journal of Biological Macromolecules, 2019, 138, 975-985.	7.5	85
6	Synthesis and antimicrobial properties of new chitosan derivatives containing guanidinium groups. Carbohydrate Polymers, 2020, 241, 116363.	10.2	80
7	Ecofriendly Synthesis of Biosynthesized Copper Nanoparticles with Starch-Based Nanocomposite: Antimicrobial, Antioxidant, and Anticancer Activities. Biological Trace Element Research, 2022, 200, 2099-2112.	3.5	76
8	Protective role of zinc oxide nanoparticles based hydrogel against wilt disease of pepper plant. Biocatalysis and Agricultural Biotechnology, 2021, 35, 102083.	3.1	75
9	A novel electromagnetic biodegradable nanocomposite based on cellulose, polyaniline, and cobalt ferrite nanoparticles. Carbohydrate Polymers, 2019, 216, 54-62.	10.2	70
10	Environmentally benign corrosion inhibitors based on cellulose niacin nano-composite for corrosion of copper in sodium chloride solutions. International Journal of Biological Macromolecules, 2020, 161, 345-354.	7.5	67
11	Hydroxyethyl cellulose/bacterial cellulose cryogel dopped silver@titanium oxide nanoparticles: Antimicrobial activity and controlled release of Tebuconazole fungicide. International Journal of Biological Macromolecules, 2020, 165, 1010-1021.	7.5	63
12	Green and ecofriendly bio-removal of methylene blue dye from aqueous solution using biologically activated banana peel waste. Sustainable Chemistry and Pharmacy, 2020, 18, 100333.	3.3	60
13	Isolation and characterization of non-cellulolytic Aspergillus flavus EGYPTA5 exhibiting selective ligninolytic potential. Biocatalysis and Agricultural Biotechnology, 2019, 17, 160-167.	3.1	59
14	Conducting chitosan/hydroxylethyl cellulose/polyaniline bionanocomposites hydrogel based on graphene oxide doped with Ag-NPs. International Journal of Biological Macromolecules, 2021, 167, 1435-1444.	7.5	57
15	Novel design of bandages using cotton pads, doped with chitosan, glycogen and ZnO nanoparticles, having enhanced antimicrobial and wounds healing effects. International Journal of Biological Macromolecules, 2022, 197, 121-130.	7.5	57
16	Eco-friendly cellulose nano fibers via first reported Egyptian Humicola fuscoatra Egyptia X4: Isolation and characterization. Environmental Nanotechnology, Monitoring and Management, 2018, 10, 409-418.	2.9	56
17	Green, economic, and partially biodegradable wood plastic composites via enzymatic surface modification of lignocellulosic fibers. Heliyon, 2019, 5, e01332.	3.2	56
18	Fermentation-based nanoparticle systems for sustainable conversion of black-liquor into biohydrogen. Journal of Cleaner Production, 2021, 309, 127349.	9.3	56

Mohamed S Hasanin

#	Article	IF	CITATIONS
19	Eco-friendly, economic fungal universal medium from watermelon peel waste. Journal of Microbiological Methods, 2020, 168, 105802.	1.6	54
20	Synthesis of antimicrobial cellulosic derivative and its catalytic activity. Journal of King Saud University - Science, 2020, 32, 436-442.	3.5	53
21	Ecofriendly preparation of silver nanoparticles-based nanocomposite stabilized by polysaccharides with antibacterial, antifungal and antiviral activities. BioMetals, 2021, 34, 1313-1328.	4.1	53
22	Green ecofriendly bio-deinking of mixed office waste paper using various enzymes from Rhizopus microsporus AH3: efficiency and characteristics. Cellulose, 2020, 27, 4443-4453.	4.9	52
23	Antimicrobial and Antiviral Activities of Durable Cotton Fabrics Treated with Nanocomposite Based on Zinc Oxide Nanoparticles, Acyclovir, Nanochitosan, and Clove Oil. Applied Biochemistry and Biotechnology, 2022, 194, 783-800.	2.9	51
24	Biocompatible hydrogel based on aldehyde-functionalized cellulose and chitosan for potential control drug release. Sustainable Chemistry and Pharmacy, 2021, 21, 100419.	3.3	50
25	Potential military cotton textiles composed of carbon quantum dots clustered from 4–(2,4–dichlorophenyl)–6–oxo–2–thioxohexahydropyrimidine–5–carbonitrile. Cellulose, 2021, 3 9991-10011.	2 8, 9	50
26	Active paper packaging material based on antimicrobial conjugated nano-polymer/amino acid as edible coating. Journal of King Saud University - Science, 2019, 31, 1095-1102.	3.5	49
27	New potential green, bioactive and antimicrobial nanocomposites based on cellulose and amino acid. International Journal of Biological Macromolecules, 2020, 144, 441-448.	7.5	48
28	Synthesis of Nanocapsules Based on Biosynthesized Nickel Nanoparticles and Potato Starch: Antimicrobial, Antioxidant, and Anticancer Activity. Starch/Staerke, 2022, 74, 2100165.	2.1	47
29	Nano-amino acid cellulose derivatives: Eco-synthesis, characterization, and antimicrobial properties. International Journal of Biological Macromolecules, 2019, 132, 963-969.	7.5	44
30	Enhancing the Antifungal Activity of Griseofulvin by Incorporation a Green Biopolymer-Based Nanocomposite. Polymers, 2021, 13, 542.	4.5	43
31	Synthesis of cellulose based amino acid functionalized nano-biocomplex: Characterization, antifungal activity, molecular docking and hemocompatibility. Environmental Nanotechnology, Monitoring and Management, 2021, 15, 100453.	2.9	43
32	Eco-Friendly Synthesis of Superhydrophobic Antimicrobial Film Based on Cellulose Acetate/Polycaprolactone Loaded with the Green Biosynthesized Copper Nanoparticles for Food Packaging Application. Journal of Polymers and the Environment, 2022, 30, 1820-1832.	5.0	43
33	Green synthesis of hydrolyzed starch–chitosan nano-composite as drug delivery system to gram negative bacteria. Environmental Nanotechnology, Monitoring and Management, 2019, 12, 100252.	2.9	42
34	Efficient treatment of rice byproducts for preparing high-performance activated carbons. Journal of Cleaner Production, 2019, 207, 284-295.	9.3	42
35	Immobilization of L-methionine γ-lyase on different cellulosic materials and its potential application in green-selective synthesis of volatile sulfur compounds. Journal of Environmental Chemical Engineering, 2020, 8, 103870.	6.7	42
36	Green biosynthesis of zinc and selenium oxide nanoparticles using callus extract of Ziziphus spina-christi: characterization, antimicrobial, and antioxidant activity. Biomass Conversion and Biorefinery, 2023, 13, 10133-10146.	4.6	42

#	Article	IF	CITATIONS
37	Properties of modified carboxymethyl cellulose and its use as bioactive compound. Carbohydrate Polymers, 2016, 153, 641-651.	10.2	40
38	In vitro improvement and rooting of banana plantlets using antifungal nanocomposite based on myco-synthesized copper oxide nanoparticles and starch. Biomass Conversion and Biorefinery, 2023, 13, 8865-8875.	4.6	40
39	Eco-Green Conversion of Watermelon Peels to Single Cell Oils Using a Unique Oleaginous Fungus: Lichtheimia corymbifera AH13. Waste and Biomass Valorization, 2020, 11, 5721-5732.	3.4	39
40	Biodegradable, Antimicrobial and Antioxidant Biofilm for Active Packaging Based on Extracted Gelatin and Lignocelluloses Biowastes. Journal of Polymers and the Environment, 2021, 29, 472-482.	5.0	39
41	Carboxymethyl Cellulose-Based Hydrogel: Dielectric Study, Antimicrobial Activity and Biocompatibility. Arabian Journal for Science and Engineering, 2021, 46, 17-30.	3.0	38
42	Green carboxymethyl cellulose-silver complex versus cellulose origins in biological activity applications. International Journal of Biological Macromolecules, 2018, 107, 1364-1372.	7.5	37
43	A new approach for antimicrobial and antiviral activities of biocompatible nanocomposite based on cellulose, amino acid and graphene oxide. Colloids and Surfaces B: Biointerfaces, 2022, 209, 112172.	5.0	37
44	Celluloseâ€Based Biomaterials: Chemistry and Biomedical Applications. Starch/Staerke, 2022, 74, .	2.1	37
45	Green biosynthesis of titanium dioxide quantum dots using watermelon peel waste: antimicrobial, antioxidant, and anticancer activities. Biomass Conversion and Biorefinery, 2024, 14, 6987-6998.	4.6	37
46	Enhancement of multifunctional properties of leather surface decorated with silver nanoparticles (Ag NPs). Journal of Molecular Structure, 2021, 1234, 130130.	3.6	35
47	Synthesis of novel heterocyclic compounds based on dialdehyde cellulose: characterization, antimicrobial, antitumor activity, molecular dynamics simulation and target identification. Cellulose, 2021, 28, 8355-8374.	4.9	35
48	Potential anticorrosive performance of green and sustainable inhibitor based on cellulose derivatives for carbon steel. Journal of Molecular Liquids, 2021, 338, 116604.	4.9	34
49	Fabrication, characterization, and potential application of modified sawdust sorbents for efficient removal of heavy metal ions and anionic dye from aqueous solutions. Journal of Cleaner Production, 2022, 332, 130021.	9.3	34
50	Green and facile synthesis of nickel oxide-porous carbon composite as improved electrochemical electrodes for supercapacitor application from banana peel waste. Environmental Science and Pollution Research, 2021, 28, 66888-66900.	5.3	32
51	Simple, Economic, Ecofriendly Method to Extract Starch Nanoparticles from Potato Peel Waste for Biological Applications. Starch/Staerke, 2021, 73, .	2.1	28
52	Dielectric properties of nicotinic acid/methyl cellulose composite via "green―method for anti-static charge applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 263, 114797.	3.5	26
53	Sustainable hybrid silica extracted from rice husk with polyvinyl alcohol and nicotinic acid as multi adsorbent for textile wastewater treatment. Environmental Science and Pollution Research, 2020, 27, 26742-26749.	5.3	24
54	Development of Antimicrobial Laser-Induced Photodynamic Therapy Based on Ethylcellulose/Chitosan Nanocomposite with 5,10,15,20-Tetrakis(m-Hydroxyphenyl)porphyrin. Molecules, 2021, 26, 3551.	3.8	23

Mohamed S Hasanin

#	Article	IF	CITATIONS
55	Hydroxypropyl methylcellulose/graphene oxide composite as drug carrier system for 5â€fluorouracil. Biotechnology Journal, 2022, 17, e2100183.	3.5	19
56	Green decoration of graphene oxide Nano sheets with gelatin and gum Arabic for targeted delivery of doxorubicin. Biotechnology Reports (Amsterdam, Netherlands), 2022, 34, e00722.	4.4	17
57	Green silver nanoparticles based on Lavandula coronopifolia aerial parts extract against mycotic mastitis in cattle. Biocatalysis and Agricultural Biotechnology, 2022, 42, 102350.	3.1	17
58	Electrical Properties of Conducting Tertiary Composite Based on Biopolymers and Polyaniline. Journal of Bio- and Tribo-Corrosion, 2021, 7, 1.	2.6	15
59	Newly synthesized imidazolotriazole, imidazolotriazine, and imidazole-pyrazole hybrid derivatives as promising antimicrobial agents. Journal of Molecular Structure, 2022, 1250, 131727.	3.6	15
60	Preparation and characterization of microcrystalline cellulose from olive stones. Biomass Conversion and Biorefinery, 2023, 13, 5015-5022.	4.6	14
61	Photocatalytic degradation of pesticide intermediate using green eco-friendly amino functionalized cellulose nanocomposites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 270, 115231.	3.5	14
62	Utilization of olive leaves extract coating incorporated with zinc/selenium oxide nanocomposite to improve the postharvest quality of green beans pods. Bioactive Carbohydrates and Dietary Fibre, 2022, 28, 100333.	2.7	14
63	Solid and liquid green Ag nanoparticles based on banana peel extract as an ecoâ€friendly remedy for ringworm in pets. Surface and Interface Analysis, 2022, 54, 607-618.	1.8	9
64	Engineering ZIF-8 Hybridization by Extracted Lignin with Antibacterial Property for Uptake of Methomyl Residues from Wastewater. Separation Science and Technology, 2022, 57, 3023-3034.	2.5	9
65	Development of ecofriendly high performance anti-corrosive chitosan nanocomposite material for mild steel corrosion in acid medium. Biomass Conversion and Biorefinery, 2023, 13, 12235-12248.	4.6	7
66	Green Immobilization of Glucanobacter xylinum onto Natural Polymers to Sustainable Bacterial Cellulose Production. Waste and Biomass Valorization, 2022, 13, 2053-2069.	3.4	6
67	Discovery Potent of Bagasse (CMC-L-Phe) As Bioactive Material Based on DFT Calculations. Eurasian Journal of Analytical Chemistry, 2018, 13, .	0.4	5
68	Lead Removal from Aqueous Solution by Green Solid Film Based on Cellulosic Fiber Extracted from Banana Tree Doped in Polyacrylamide. Fibers and Polymers, 2022, 23, 1171-1181.	2.1	4
69	Poly(amidoamine)/cellulose based bio-composites as potential anticancer bio-compatible polymers. Polymer Bulletin, 2022, 79, 8807-8822.	3.3	3
70	Experimental and theoretical investigation to improvement biodiesel production using green catalyst based on cellulose derivatives. Materials Express, 2021, 11, 142-151.	0.5	1
71	Photofunctional Materials Based on Sheet Polymer Capped Organic Molecules for Visibleâ€Lightâ€Responsive Rewritable Paper. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 667-677.	3.7	1
72	Multifunction Ecofriendly Active Packaging Coating-Based Hybrid Polyethyleneimine/ Sr(Ti0.7Fe0.3)(1-x)ScxO3 Nanocomposites. Arabian Journal for Science and Engineering, 0, , 1.	3.0	0