AntÃ³nio Augusto Martins de Oliveira S

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8901425/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of moderate hydrostatic pressures on the enzymatic activity and bioactive composition of pineapple byâ€products. Journal of Food Process Engineering, 2022, 45, e13537.	2.9	7
2	Phaeodactylum tricornutum extracts as structuring agents for food applications: Physicochemical and functional properties. Food Hydrocolloids, 2022, 124, 107276.	10.7	10
3	Gelation Behavior and Stability of Multicomponent Sterol-Based Oleogels. Gels, 2022, 8, 37.	4.5	12
4	Future food proteins—Trends and perspectives. , 2022, , 267-285.		3
5	Management of Operational Parameters and Novel Spinneret Configurations for the Electrohydrodynamic Processing of Functional Polymers. Macromolecular Materials and Engineering, 2022, 307, .	3.6	8
6	Unexpected Antioxidant Efficiency of Chlorogenic Acid Phenolipids in Fish Oil-in-Water Nanoemulsions: An Example of How Relatively Low Interfacial Concentrations Can Make Antioxidants to Be Inefficient. Molecules, 2022, 27, 861.	3.8	4
7	Hydroxypropyl methylcellulose-based micro- and nanostructures for encapsulation of melanoidins: Effect of electrohydrodynamic processing variables on morphological and physicochemical properties. International Journal of Biological Macromolecules, 2022, 202, 453-467.	7.5	8
8	Olive Oil Phenolic Compounds as Antioxidants in Functional Foods: Description, Sources and Stability. , 2022, , 427-453.		1
9	Control of Lipid Oxidation in Oil-in Water Emulsions: Effects of Antioxidant Partitioning and Surfactant Concentration. , 2022, , 201-216.		1
10	Effect of green propolis extract on functional properties of active pectin-based films. Food Hydrocolloids, 2022, 131, 107746.	10.7	23
11	Emerging challenges in assessing bio-based nanosystems' behaviour under in vitro digestion focused on food applications – A critical view and future perspectives. Food Research International, 2022, 157, 111417.	6.2	4
12	Exploring the performance of amaranth grain starch and protein microcapsules as Î ² -carotene carrier systems for food applications. Food Structure, 2022, 33, 100287.	4.5	10
13	Influence of the addition of different ingredients on the bioaccessibility of glucose released from rice during dynamic <i>inÂvitro</i> gastrointestinal digestion. International Journal of Food Sciences and Nutrition, 2021, 72, 45-56.	2.8	9
14	Flaxseed gum-biopolymers interactions driving rheological behaviour of oropharyngeal dysphagia-oriented products. Food Hydrocolloids, 2021, 111, 106257.	10.7	33
15	Prebiotic effects of olive pomace powders in the gut: In vitro evaluation of the inhibition of adhesion of pathogens, prebiotic and antioxidant effects. Food Hydrocolloids, 2021, 112, 106312.	10.7	30
16	How additive manufacturing can boost the bioactivity of baked functional foods. Journal of Food Engineering, 2021, 294, 110394.	5.2	19
17	Ohmic heating as a new tool for protein scaffold engineering. Materials Science and Engineering C, 2021, 120, 111784.	7.3	5
18	A new family of hydroxytyrosol phenolipids for the antioxidant protection of liposomal systems. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183505.	2.6	10

#	Article	IF	CITATIONS
19	Are olive pomace powders a safe source of bioactives and nutrients?. Journal of the Science of Food and Agriculture, 2021, 101, 1963-1978.	3.5	31
20	Polymeric micelles using cholinium-based ionic liquids for the encapsulation and release of hydrophobic drug molecules. Biomaterials Science, 2021, 9, 2183-2196.	5.4	18
21	Modulation and Characterization of Wax-Based Olive Oil Organogels in View of Their Application in the Food Industry. Gels, 2021, 7, 12.	4.5	14
22	Ohmic Heating—An Emergent Technology in Innovative Food Processing. , 2021, , 107-123.		2
23	Effects of Moderate Electric Fields on the Post-harvest Preservation of Chestnuts. Food and Bioprocess Technology, 2021, 14, 920-934.	4.7	8
24	Polyphenolic Antioxidants in Lipid Emulsions: Partitioning Effects and Interfacial Phenomena. Foods, 2021, 10, 539.	4.3	33
25	Nanoemulsions for Enhancement of Curcumin Bioavailability and Their Safety Evaluation: Effect of Emulsifier Type. Nanomaterials, 2021, 11, 815.	4.1	17
26	Study of olive pomace antioxidant dietary fibre powder throughout gastrointestinal tract as multisource of phenolics, fatty acids and dietary fibre. Food Research International, 2021, 142, 110032.	6.2	12
27	Modulating process parameters to change physical properties of bigels for food applications. Food Structure, 2021, 28, 100173.	4.5	42
28	Pineapple (Ananas comosus L.) By-Products Valorization: Novel Bio Ingredients for Functional Foods. Molecules, 2021, 26, 3216.	3.8	5
29	Heat Treatment and Wounding as Abiotic Stresses to Enhance the Bioactive Composition of Pineapple By-Products. Applied Sciences (Switzerland), 2021, 11, 4313.	2.5	3
30	Effects of the Reactive Moiety of Phenolipids on Their Antioxidant Efficiency in Model Emulsified Systems. Foods, 2021, 10, 1028.	4.3	7
31	Incorporation of olive pomace ingredients into yoghurts as a source of fibre and hydroxytyrosol: Antioxidant activity and stability throughout gastrointestinal digestion. Journal of Food Engineering, 2021, 297, 110476.	5.2	30
32	Lipid-based nanostructures as a strategy to enhance curcumin bioaccessibility: Behavior under digestion and cytotoxicity assessment. Food Research International, 2021, 143, 110278.	6.2	29
33	Antimicrobial properties of chitosan and galactomannan composite coatings and physical properties of films made thereof. Future Foods, 2021, 3, 100028.	5.4	4
34	Continuous pressurized extraction versus electric fields-assisted extraction of cyanobacterial pigments. Journal of Biotechnology, 2021, 334, 35-42.	3.8	12
35	Extraction of Pigments from Microalgae and Cyanobacteria—A Review on Current Methodologies. Applied Sciences (Switzerland), 2021, 11, 5187.	2.5	39
36	Active Carboxymethylcellulose-Based Edible Films: Influence of Free and Encapsulated Curcumin on Films' Properties. Foods, 2021, 10, 1512.	4.3	13

#	Article	IF	CITATIONS
37	Curcumin encapsulation in nanostructures for cancer therapy: A 10-year overview. International Journal of Pharmaceutics, 2021, 604, 120534.	5.2	32
38	The role of emergent processing technologies in tailoring plant protein functionality: New insights. Trends in Food Science and Technology, 2021, 113, 219-231.	15.1	51
39	Algal proteins: Production strategies and nutritional and functional properties. Bioresource Technology, 2021, 332, 125125.	9.6	90
40	Modeling Chemical Reactivity at the Interfaces of Emulsions: Effects of Partitioning and Temperature. Molecules, 2021, 26, 4703.	3.8	11
41	Development and Characterization of Pectin Films with Salicornia ramosissima: Biodegradation in Soil and Seawater. Polymers, 2021, 13, 2632.	4.5	18
42	Influence of ohmic heating on the structural and immunoreactive properties of soybean proteins. LWT - Food Science and Technology, 2021, 148, 111710.	5.2	23
43	Food-grade hydroxypropyl methylcellulose-based formulations for electrohydrodynamic processing: Part I – Role of solution parameters on fibre and particle production. Food Hydrocolloids, 2021, 118, 106761.	10.7	22
44	Tackling older adults' malnutrition through the development of tailored food products. Trends in Food Science and Technology, 2021, 115, 55-73.	15.1	9
45	Interfacial kinetics in olive oil-in-water nanoemulsions: Relationships between rates of initiation of lipid peroxidation, induction times and effective interfacial antioxidant concentrations. Journal of Colloid and Interface Science, 2021, 604, 248-259.	9.4	20
46	Electrohydrodynamic processing for the production of zein-based microstructures and nanostructures. Current Opinion in Colloid and Interface Science, 2021, 56, 101504.	7.4	17
47	Caffeic acid phenolipids in the protection of cell membranes from oxidative injuries. Interaction with the membrane phospholipid bilayer. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183727.	2.6	9
48	Unraveling the nature of ohmic heating effects in structural aspects of whey proteins – The impact of electrical and electrochemical effects. Innovative Food Science and Emerging Technologies, 2021, 74, 102831.	5.6	11
49	Xyloglucan and Concanavalin A based dressings in the topical treatment of mice wound healing process. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100136.	2.6	6
50	Effects of Surfactant Volume Fraction on the Antioxidant Efficiency and on The Interfacial Concentrations of Octyl and Tetradecyl p-Coumarates in Corn Oil-in-Water Emulsions. Molecules, 2021, 26, 6058.	3.8	2
51	Polyphenols as Antioxidants for Extending Food Shelf-Life and in the Prevention of Health Diseases: Encapsulation and Interfacial Phenomena. Biomedicines, 2021, 9, 1909.	3.2	25
52	Valorisation of Mango Peels: Extraction of Pectin and Antioxidant and Antifungal Polyphenols. Waste and Biomass Valorization, 2020, 11, 89-98.	3.4	30
53	Characterization of the behavior of carotenoids from pitanga (Eugenia uniflora) and buriti (Mauritia) Tj ETQq1 1 Food Science and Technology, 2020, 57, 650-662.	0.784314 2.8	rgBT /Overlo 15
54	Multi-step thermally induced transitions of β-lactoglobulin – An in situ spectroscopy approach. International Dairy Journal, 2020, 100, 104562.	3.0	6

#	Article	IF	CITATIONS
55	Design of Î ² -lactoglobulin micro- and nanostructures by controlling gelation through physical variables. Food Hydrocolloids, 2020, 100, 105357.	10.7	13
56	Suitability of Î ² -lactoglobulin micro- and nanostructures for loading and release of bioactive compounds. Food Hydrocolloids, 2020, 101, 105492.	10.7	17
57	Influence of moderate electric fields in β-lactoglobulin thermal unfolding and interactions. Food Chemistry, 2020, 304, 125442.	8.2	36
58	Evaluation of linseed oil oleogels to partially replace pork backfat in fermented sausages. Journal of the Science of Food and Agriculture, 2020, 100, 218-224.	3.5	89
59	Influence of AO chain length, droplet size and oil to water ratio on the distribution and on the activity of gallates in fish oil-in-water emulsified systems: Emulsion and nanoemulsion comparison. Food Chemistry, 2020, 310, 125716.	8.2	38
60	β-lactoglobulin micro- and nanostructures as bioactive compounds vehicle: In vitro studies. Food Research International, 2020, 131, 108979.	6.2	30
61	Physicochemical characterisation and release behaviour of curcumin-loaded lactoferrin nanohydrogels into food simulants. Food and Function, 2020, 11, 305-317.	4.6	19
62	Rice in vitro digestion: application of INFOGEST harmonized protocol for glycemic index determination and starch morphological study. Journal of Food Science and Technology, 2020, 57, 1393-1404.	2.8	30
63	Electrosprayed whey protein-based nanocapsules for β-carotene encapsulation. Food Chemistry, 2020, 314, 126157.	8.2	36
64	Dehydration of protein lactoferrin-glycomacropeptide nanohydrogels. Food Hydrocolloids, 2020, 101, 105550.	10.7	16
65	Oleogels for development of health-promoting food products. Food Science and Human Wellness, 2020, 9, 31-39.	4.9	96
66	Effects of moderate electric fields on cold-set gelation of whey proteins – From molecular interactions to functional properties. Food Hydrocolloids, 2020, 101, 105505.	10.7	38
67	Development and Characterization of Lipid-Based Nanosystems: Effect of Interfacial Composition on Nanoemulsion Behavior. Food and Bioprocess Technology, 2020, 13, 67-87.	4.7	10
68	Effects of droplet size on the interfacial concentrations of antioxidants in fish and olive oil-in-water emulsions and nanoemulsions and on their oxidative stability. Journal of Colloid and Interface Science, 2020, 562, 352-362.	9.4	43
69	Total and Sustainable Valorisation of Olive Pomace Using a Fractionation Approach. Applied Sciences (Switzerland), 2020, 10, 6785.	2.5	35
70	Development and Evaluation of Superabsorbent Hydrogels Based on Natural Polymers. Polymers, 2020, 12, 2173.	4.5	16
71	Using Ohmic Heating effect on grape skins as a pretreatment for anthocyanins extraction. Food and Bioproducts Processing, 2020, 124, 320-328.	3.6	36
72	Green synthesis of lignin nano- and micro-particles: Physicochemical characterization, bioactive properties and cytotoxicity assessment. International Journal of Biological Macromolecules, 2020, 163, 1798-1809.	7.5	46

#	Article	IF	CITATIONS
73	Optimization of the Effect of Pineapple By-Products Enhanced in Bromelain by Hydrostatic Pressure on the Texture and Overall Quality of Silverside Beef Cut. Foods, 2020, 9, 1752.	4.3	15
74	Electric field effects on proteins – Novel perspectives on food and potential health implications. Food Research International, 2020, 137, 109709.	6.2	30
75	8th International symposium on delivery of functionality in complex food systems (DOF 2019). Food and Function, 2020, 11, 9316-9316.	4.6	0
76	Candelilla Wax Edible Coating with Flourensia cernua Bioactives to Prolong the Quality of Tomato Fruits. Foods, 2020, 9, 1303.	4.3	31
77	Interfacial Concentrations of Hydroxytyrosol Derivatives in Fish Oil-in-Water Emulsions and Nanoemulsions and Its Influence on Their Lipid Oxidation: Droplet Size Effects. Foods, 2020, 9, 1897.	4.3	10
78	Factors affecting polyhydroxyalkanoates biodegradation in soil. Polymer Degradation and Stability, 2020, 182, 109408.	5.8	45
79	Characterization of Enriched Meat-Based Pâté Manufactured with Oleogels as Fat Substitutes. Gels, 2020, 6, 17.	4.5	57
80	Effects of ohmic heating on the immunoreactivity of β-lactoglobulin – a relationship towards structural aspects. Food and Function, 2020, 11, 4002-4013.	4.6	26
81	Printability, microstructure, and flow dynamics of phase-separated edible 3D inks. Food Hydrocolloids, 2020, 109, 106120.	10.7	36
82	Enhancement of PLA-PVA Surface Adhesion in Bilayer Assemblies by PLA Aminolisation. Food and Bioprocess Technology, 2020, 13, 1215-1228.	4.7	19
83	Separation and purification of curcumin using novel aqueous two-phase micellar systems composed of amphiphilic copolymer and cholinium ionic liquids. Separation and Purification Technology, 2020, 250, 117262.	7.9	23
84	Rheology and soft tribology of thickened dispersions aiming the development of oropharyngeal dysphagia-oriented products. Current Research in Food Science, 2020, 3, 19-29.	5.8	41
85	Lactoferrin-based nanoemulsions to improve the physical and chemical stability of omega-3 fatty acids. Food and Function, 2020, 11, 1966-1981.	4.6	34
86	Perspective on oleogelator mixtures, structure design and behaviour towards digestibility of oleogels. Current Opinion in Food Science, 2020, 35, 27-35.	8.0	50
87	3D printed functional cookies fortified with Arthrospira platensis: Evaluation of its antioxidant potential and physical-chemical characterization. Food Hydrocolloids, 2020, 107, 105893.	10.7	76
88	Edible Films Based on Black Chia (Salvia hispanica L.) Seed Mucilage Containing Rhus microphylla Fruit Phenolic Extract. Coatings, 2020, 10, 326.	2.6	15
89	Development of an Organic Culture Medium for Autotrophic Production of Chlorella vulgaris Biomass. Applied Sciences (Switzerland), 2020, 10, 2156.	2.5	7
90	Selfâ€Organizing Structures of Phosphatidylcholine in Nonaqueous Solvents: Tailoring Gelâ€like Systems. Journal of Surfactants and Detergents, 2020, 23, 725-735.	2.1	5

#	Article	IF	CITATIONS
91	Simulated digestion of an olive pomace water-soluble ingredient: relationship between the bioaccessibility of compounds and their potential health benefits. Food and Function, 2020, 11, 2238-2254.	4.6	40
92	In vitro gastrointestinal evaluation of a juçara-based smoothie: effect of processing on phenolic compounds bioaccessibility. Journal of Food Science and Technology, 2019, 56, 5017-5026.	2.8	14
93	Evaluation of disruption/permeabilization methodologies for Microcystis aeruginosa as alternatives to obtain high yields of microcystin release. Algal Research, 2019, 42, 101611.	4.6	11
94	Methods for determining bioavailability and bioaccessibility of bioactive compounds and nutrients. , 2019, , 23-54.		53
95	Emergent food proteins – Towards sustainability, health and innovation. Food Research International, 2019, 125, 108586.	6.2	141
96	Fourier Transform Infrared (FT-IR) Spectroscopy as a Possible Rapid Tool to Evaluate Abiotic Stress Effects on Pineapple By-Products. Applied Sciences (Switzerland), 2019, 9, 4141.	2.5	28
97	Omegaâ€3 and Polyunsaturated Fatty Acidsâ€Enriched Hamburgers Using Sterolâ€Based Oleogels. European Journal of Lipid Science and Technology, 2019, 121, 1900111.	1.5	54
98	Strategy towards Replacing Pork Backfat with a Linseed Oleogel in Frankfurter Sausages and Its Evaluation on Physicochemical, Nutritional, and Sensory Characteristics. Foods, 2019, 8, 366.	4.3	80
99	Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 2019, 9, 144.	4.1	62
100	Control of antioxidant efficiency of chlorogenates in emulsions: modulation of antioxidant interfacial concentrations. Journal of the Science of Food and Agriculture, 2019, 99, 3917-3925.	3.5	29
101	Nanostructures of whey proteins for encapsulation of food ingredients. , 2019, , 69-100.		3
102	Nanoparticles of lactoferrin for encapsulation of food ingredients. , 2019, , 147-168.		6
103	Production of Biomass-Degrading Enzymes by Trichoderma reesei Using Liquid Hot Water-Pretreated Corncob in Different Conditions of Oxygen Transfer. Bioenergy Research, 2019, 12, 583-592.	3.9	10
104	Comparison and optimization of different methods for Microcystis aeruginosa's harvesting and the role of zeta potential on its efficiency. Environmental Science and Pollution Research, 2019, 26, 16708-16715.	5.3	8
105	Amphiphilic Modified Galactomannan as a Novel Potential Carrier for Hydrophobic Compounds. Frontiers in Sustainable Food Systems, 2019, 3, .	3.9	9
106	Î ² -carotene and α-tocopherol coencapsulated in nanostructured lipid carriers of murumuru (<i>Astrocaryum murumuru</i>) butter produced by phase inversion temperature method: characterisation, dynamic <i>in vitro</i> digestion and cell viability study. Journal of Microencapsulation, 2019, 36, 43-52.	2.8	23
107	Effect of extraction temperature on rheological behavior and antioxidant capacity of flaxseed gum. Carbohydrate Polymers, 2019, 213, 217-227.	10.2	41

4.5 33

#	Article	IF	CITATIONS
109	Ohmic heating for preservation, transformation, and extraction. , 2019, , 159-191.		2
110	Evaluating the effect of chitosan layer on bioaccessibility and cellular uptake of curcumin nanoemulsions. Journal of Food Engineering, 2019, 243, 89-100.	5.2	73
111	Effect of Ohmic heating on functionality of sodium caseinate – A relationship with protein gelation. Food Research International, 2019, 116, 628-636.	6.2	34
112	Sterolâ€based oleogels' characterization envisioning food applications. Journal of the Science of Food and Agriculture, 2019, 99, 3318-3325.	3.5	39
113	Application of edible nanolaminate coatings with antimicrobial extract of Flourensia cernua to extend the shelf-life of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 2019, 150, 19-27.	6.0	63
114	Banana starch nanocomposite with cellulose nanofibers isolated from banana peel by enzymatic treatment: In vitro cytotoxicity assessment. Carbohydrate Polymers, 2019, 207, 169-179.	10.2	84
115	Liposomes loaded with phenolic extracts of Spirulina LEB-18: Physicochemical characterization and behavior under simulated gastrointestinal conditions. Food Research International, 2019, 120, 656-667.	6.2	70
116	Electric field effects on β-lactoglobulin thermal unfolding as a function of pH – Impact on protein functionality. Innovative Food Science and Emerging Technologies, 2019, 52, 1-7.	5.6	42
117	New Insights on Bio-Based Micro- and Nanosystems in Food. , 2019, , 708-714.		4
118	Optimization of a chitosan solution as potential carrier for the incorporation of Santolina chamaecyparissus L. solid by-product in an edible vegetal coating on â€~Manchego' cheese. Food Hydrocolloids, 2019, 89, 272-282.	10.7	43
119	Hybrid gels: Influence of oleogel/hydrogel ratio on rheological and textural properties. Food Research International, 2019, 116, 1298-1305.	6.2	96
120	One-step chromatographic method to purify α-lactalbumin from whey for nanotube synthesis purposes. Food Chemistry, 2019, 275, 480-488.	8.2	16
121	Pistachio nut allergy: An updated overview. Critical Reviews in Food Science and Nutrition, 2019, 59, 546-562.	10.3	30
122	Cashew Nut Allergy: Clinical Relevance and Allergen Characterisation. Clinical Reviews in Allergy and Immunology, 2019, 57, 1-22.	6.5	47
123	Influence of <i>Cassia grandis</i> galactomannan on the properties of sponge cakes: a substitute for fat. Food and Function, 2018, 9, 2456-2468.	4.6	12
124	Construction of a Biocompatible and Antioxidant Multilayer Coating by Layer-by-Layer Assembly of κ-Carrageenan and Quercetin Nanoparticles. Food and Bioprocess Technology, 2018, 11, 1050-1060.	4.7	27
125	Electric field-based technologies for valorization of bioresources. Bioresource Technology, 2018, 254, 325-339.	9.6	108
126	Use of edible films and coatings in cheese preservation: Opportunities and challenges. Food Research International, 2018, 107, 84-92.	6.2	144

#	Article	IF	CITATIONS
127	Ohmic heating for the dairy industry: a potential technology to develop probiotic dairy foods in association with modifications of whey protein structure. Current Opinion in Food Science, 2018, 22, 95-101.	8.0	57
128	Edible oleogels: an opportunity for fat replacement in foods. Food and Function, 2018, 9, 758-773.	4.6	181
129	Synergistic interactions between lecithin and fruit wax in oleogel formation. Food and Function, 2018, 9, 1755-1767.	4.6	91
130	Antioxidant Compounds Recovery from Juçara Residue by Thermal Assisted Extraction. Plant Foods for Human Nutrition, 2018, 73, 68-73.	3.2	16
131	Thermodynamic, rheological and structural properties of edible oils structured with LMOGs: Influence of gelator and oil phase. Food Structure, 2018, 16, 50-58.	4.5	32
132	Cellulose nanocrystals from grape pomace: Production, properties and cytotoxicity assessment. Carbohydrate Polymers, 2018, 192, 327-336.	10.2	108
133	Physiological protection of probiotic microcapsules by coatings. Critical Reviews in Food Science and Nutrition, 2018, 58, 1864-1877.	10.3	89
134	Cold gel-like emulsions of lactoferrin subjected to ohmic heating. Food Research International, 2018, 103, 371-379.	6.2	35
135	Xyloglucan from Hymenaea courbaril var. courbaril seeds as encapsulating agent of l-ascorbic acid. International Journal of Biological Macromolecules, 2018, 107, 1559-1566.	7.5	25
136	Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: Characterization and cytotoxicity assessment. Food Hydrocolloids, 2018, 75, 192-201.	10.7	138
137	Effect of alginate molecular weight and M/G ratio in beads properties foreseeing the protection of probiotics. Food Hydrocolloids, 2018, 77, 8-16.	10.7	134
138	Development, Characterization, and Stability of O/W Pepper Nanoemulsions Produced by High-Pressure Homogenization. Food and Bioprocess Technology, 2018, 11, 355-367.	4.7	68
139	Preparation and characterization of a chitosan film with grape seed extract-carvacrol microcapsules and its effect on the shelf-life of refrigerated Salmon (Salmo salar). LWT - Food Science and Technology, 2018, 89, 525-534.	5.2	105
140	Emerging opportunities in exploring the nutritional/functional value of amaranth. Food and Function, 2018, 9, 5499-5512.	4.6	58
141	Protein-Based Structures for Food Applications: From Macro to Nanoscale. Frontiers in Sustainable Food Systems, 2018, 2, .	3.9	42
142	Electric Field Processing: Novel Perspectives on Allergenicity of Milk Proteins. Journal of Agricultural and Food Chemistry, 2018, 66, 11227-11233.	5.2	26
143	Enhanced Mechanical and Thermal Strength in Mixed-Enantiomers-Based Supramolecular Gel. Langmuir, 2018, 34, 12957-12967.	3.5	25
144	Lecithin and phytosterols-based mixtures as hybrid structuring agents in different organic phases. Food Research International, 2018, 111, 168-177.	6.2	42

#	Article	IF	CITATIONS
145	In vitro digestibility and fermentability of fructo-oligosaccharides produced by Aspergillus ibericus. Journal of Functional Foods, 2018, 46, 278-287.	3.4	38
146	Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life, 2018, 17, 39-49.	7.5	56
147	Nanotechnology in Food Packaging: Opportunities and Challenges. , 2018, , 1-11.		26
148	Advances in nutraceutical delivery systems: From formulation design for bioavailability enhancement to efficacy and safety evaluation. Trends in Food Science and Technology, 2018, 78, 270-291.	15.1	160
149	Electrotechnologies applied to microalgal biotechnology – Applications, techniques and future trends. Renewable and Sustainable Energy Reviews, 2018, 94, 656-668.	16.4	80
150	Modulating the interfacial concentration of gallates to improve the oxidative stability of fish oil-in-water emulsions. Food Research International, 2018, 112, 192-198.	6.2	38
151	Edible films and coatings based on mango (var. Ataulfo) by-products to improve gas transfer rate of peach. LWT - Food Science and Technology, 2018, 97, 624-631.	5.2	95
152	Bio-Based Nanocomposites for Food Packaging and Their Effect in Food Quality and Safety. , 2018, , 271-306.		16
153	Characterization of Particle Properties in Nanoemulsions. , 2018, , 519-546.		6
154	Evaluating the behaviour of curcumin nanoemulsions and multilayer nanoemulsions during dynamic in vitro digestion. Journal of Functional Foods, 2018, 48, 605-613.	3.4	70
155	Lignin from an integrated process consisting of liquid hot water and ethanol organosolv: Physicochemical and antioxidant properties. International Journal of Biological Macromolecules, 2018, 120, 159-169.	7.5	80
156	In vitro digestion of lactoferrin-glycomacropeptide nanohydrogels incorporating bioactive compounds: Effect of a chitosan coating. Food Hydrocolloids, 2018, 84, 267-275.	10.7	22
157	Lignocellulosic Materials and Their Use in Bio-based Packaging. Springer Briefs in Molecular Science, 2018, , .	0.1	10
158	Lignocellulosic Materials: Sources and Processing Technologies. Springer Briefs in Molecular Science, 2018, , 13-33.	0.1	5
159	Processing, Production Methods and Characterization of Bio-Based Packaging Materials. Springer Briefs in Molecular Science, 2018, , 49-63.	0.1	1
160	Use of Lignocellulosic Materials in Bio-based Packaging. Springer Briefs in Molecular Science, 2018, , 65-85.	0.1	6
161	Food Applications of Lignocellulosic-Based Packaging Materials. Springer Briefs in Molecular Science, 2018, , 87-94.	0.1	1
162	Conclusion and Future Trends. Springer Briefs in Molecular Science, 2018, , 95-97.	0.1	1

#	Article	IF	CITATIONS
163	Design of whey protein nanostructures for incorporation and release of nutraceutical compounds in food. Critical Reviews in Food Science and Nutrition, 2017, 57, 1377-1393.	10.3	83
164	Physical evidence that the variations in the efficiency of homologous series of antioxidants in emulsions are a result of differences in their distribution. Journal of the Science of Food and Agriculture, 2017, 97, 564-571.	3.5	43
165	Immobilization of bioactive compounds in Cassia grandis galactomannan-based films: Influence on physicochemical properties. International Journal of Biological Macromolecules, 2017, 96, 727-735.	7.5	25
166	Advances in Food Nanotechnology. , 2017, , 11-38.		17
167	Development of a novel user-friendly platform to couple light regime characterization with particle tracking - cells' light history determination during phototrophic cultivations. Algal Research, 2017, 24, 276-283.	4.6	5
168	Formation, stability and antioxidant activity of food-grade multilayer emulsions containing resveratrol. Food Hydrocolloids, 2017, 71, 207-215.	10.7	62
169	Development of iron-rich whey protein hydrogels following application of ohmic heating – Effects of moderate electric fields. Food Research International, 2017, 99, 435-443.	6.2	39
170	Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Advances in Colloid and Interface Science, 2017, 243, 23-45.	14.7	215
171	Structural and mechanical properties of organogels: Role of oil and gelator molecular structure. Food Research International, 2017, 96, 161-170.	6.2	87
172	Fortified beeswax oleogels: effect of β-carotene on the gel structure and oxidative stability. Food and Function, 2017, 8, 4241-4250.	4.6	87
173	Assessment of synergistic interactions between environmental factors on Microcystis aeruginosa growth and microcystin production. Algal Research, 2017, 27, 235-243.	4.6	17
174	The QUIC Transport Protocol. , 2017, , .		481
175	Effect of moderate electric fields in the properties of starch and chitosan films reinforced with microcrystalline cellulose. Carbohydrate Polymers, 2017, 174, 1181-1191.	10.2	44
176	Towards the understanding of the behavior of bio-based nanostructures during in vitro digestion. Current Opinion in Food Science, 2017, 15, 79-86.	8.0	17
177	In vitro digestion of oil-in-water emulsions stabilized by whey protein nanofibrils. Food Research International, 2017, 99, 790-798.	6.2	35
178	Creating functional nanostructures: Encapsulation of caffeine into α-lactalbumin nanotubes. Innovative Food Science and Emerging Technologies, 2017, 40, 10-17.	5.6	50
179	Physico-chemical stability and inÂvitro digestibility of beta-carotene-loaded lipid nanoparticles of cupuacu butter (Theobroma grandiflorum) produced by the phase inversion temperature (PIT) method. Journal of Food Engineering, 2017, 192, 93-102.	5.2	37
180	Comparing the effects of glazing and chitosan-based coating applied on frozen salmon on its organoleptic and physicochemical characteristics over six-months storage. Journal of Food Engineering, 2017, 194, 79-86.	5.2	23

#	Article	IF	CITATIONS
181	Nanostructured biobased systems for nutrient and bioactive compounds delivery. , 2017, , 43-85.		6
182	Cyanobacterial toxins as a high value-added product. , 2017, , 401-428.		5
183	ADVANCES IN PRESERVATION OF FRUITS AND VEGETABLES WITH BIOACTIVE COATINGS. Boletim Centro De Pesquisa De Processamento De Alimentos, 2016, 33, .	0.2	1
184	Film blowing of PHBV blends and PHBVâ€based multilayers for the production of biodegradable packages. Journal of Applied Polymer Science, 2016, 133, .	2.6	49
185	X-ray microtomography provides new insights into vacuum impregnation of spinach leaves. Journal of Food Engineering, 2016, 188, 50-57.	5.2	14
186	Beeswax organogels: Influence of gelator concentration and oil type in the gelation process. Food Research International, 2016, 84, 170-179.	6.2	119
187	Effects of ohmic heating on extraction of food-grade phytochemicals from colored potato. LWT - Food Science and Technology, 2016, 74, 493-503.	5.2	93
188	Compositional features and bioactive properties of whole fraction from Aloe vera processing. Industrial Crops and Products, 2016, 91, 179-185.	5.2	30
189	Probiotic-loaded microcapsule system for human in situ folate production: Encapsulation and system validation. Food Research International, 2016, 90, 25-32.	6.2	24
190	Optimizing the efficiency of antioxidants in emulsions by lipophilization: tuning interfacial concentrations. RSC Advances, 2016, 6, 91483-91493.	3.6	27
191	Use of Electrospinning to Develop Antimicrobial Biodegradable Multilayer Systems: Encapsulation of Cinnamaldehyde and Their Physicochemical Characterization. Food and Bioprocess Technology, 2016, 9, 1874-1884.	4.7	65
192	Lactoferrin-based nanoparticles as a vehicle for iron in food applications – Development and release profile. Food Research International, 2016, 90, 16-24.	6.2	34
193	Development of an immobilization system for in situ micronutrients release. Food Research International, 2016, 90, 121-132.	6.2	8
194	Interfacial Concentrations of Hydroxytyrosol and Its Lipophilic Esters in Intact Olive Oil-in-Water Emulsions: Effects of Antioxidant Hydrophobicity, Surfactant Concentration, and the Oil-to-Water Ratio on the Oxidative Stability of the Emulsions. Journal of Agricultural and Food Chemistry, 2016, 64, 5274-5283.	5.2	63
195	Layer-by-Layer Technique to Developing Functional Nanolaminate Films with Antifungal Activity. Food and Bioprocess Technology, 2016, 9, 471-480.	4.7	42
196	InÂvitro digestion and stability assessment of β-lactoglobulin/riboflavin nanostructures. Food Hydrocolloids, 2016, 58, 89-97.	10.7	50
197	Design of bio-based supramolecular structures through self-assembly of α-lactalbumin and lysozyme. Food Hydrocolloids, 2016, 58, 60-74.	10.7	19
198	Effect of chitosan– Aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit. Postharvest Biology and Technology, 2016, 116, 88-97.	6.0	224

#	Article	IF	CITATIONS
199	Bacterial cellulose-lactoferrin as an antimicrobial edible packaging. Food Hydrocolloids, 2016, 58, 126-140.	10.7	117
200	Encapsulation and controlled release of bioactive compounds in lactoferrin-glycomacropeptide nanohydrogels: Curcumin and caffeine as model compounds. Journal of Food Engineering, 2016, 180, 110-119.	5.2	106
201	Influence of chitosan coating on protein-based nanohydrogels properties and inÂvitro gastric digestibility. Food Hydrocolloids, 2016, 60, 109-118.	10.7	48
202	Production of Whey Protein-Based Aggregates Under Ohmic Heating. Food and Bioprocess Technology, 2016, 9, 576-587.	4.7	63
203	Effect of variables on the thickness of an edible coating applied on frozen fish – Establishment of the concept of safe dipping time. Journal of Food Engineering, 2016, 171, 111-118.	5.2	18
204	Perspectives on Utilization of Edible Coatings and Nano-laminate Coatings for Extension of Postharvest Storage of Fruits and Vegetables. Food Engineering Reviews, 2016, 8, 292-305.	5.9	129
205	InÂvitro behaviour of curcumin nanoemulsions stabilized by biopolymer emulsifiers – Effect of interfacial composition. Food Hydrocolloids, 2016, 52, 460-467.	10.7	134
206	Introduction to the Special Issue on COST Action FA1001. Food Engineering Reviews, 2015, 7, 383-383.	5.9	0
207	Production and Extraction of Polysaccharides and Oligosaccharides and Their Use as New Food Additives. , 2015, , 653-679.		15
208	Use of wheat bran arabinoxylans in chitosan-based films: Effect on physicochemical properties. Industrial Crops and Products, 2015, 66, 305-311.	5.2	71
209	Exploring the potentialities of using lignocellulosic fibres derived from three food by-products as constituents of biocomposites for food packaging. Industrial Crops and Products, 2015, 69, 110-122.	5.2	91
210	On the extraction of cellulose nanowhiskers from food by-products and their comparative reinforcing effect on a polyhydroxybutyrate-co-valerate polymer. Cellulose, 2015, 22, 535-551.	4.9	36
211	Continuous beer fermentation - diacetyl as a villain. Journal of the Institute of Brewing, 2015, 121, 55-61.	2.3	12
212	Edible Bio-Based Nanostructures: Delivery, Absorption and Potential Toxicity. Food Engineering Reviews, 2015, 7, 491-513.	5.9	41
213	Influence of surfactant and processing conditions in the stability of oil-in-water nanoemulsions. Journal of Food Engineering, 2015, 167, 89-98.	5.2	131
214	Physical and mass transfer properties of electrospun É>-polycaprolactone nanofiber membranes. Process Biochemistry, 2015, 50, 885-892.	3.7	6
215	Antimicrobial nanostructured starch based films for packaging. Carbohydrate Polymers, 2015, 129, 127-134.	10.2	215
216	Functional Characterisation and Antimicrobial Efficiency Assessment of Smart Nanohydrogels Containing Natamycin Incorporated into Polysaccharide-Based Films. Food and Bioprocess Technology, 2015, 8, 1430-1441.	4.7	21

#	Article	IF	CITATIONS
217	Development and characterization of lactoferrin-GMP nanohydrogels: Evaluation of pH, ionic strength and temperature effect. Food Hydrocolloids, 2015, 48, 292-300.	10.7	58
218	Hollow chitosan/alginate nanocapsules for bioactive compound delivery. International Journal of Biological Macromolecules, 2015, 79, 95-102.	7.5	59
219	Continuous cultivation of photosynthetic microorganisms: Approaches, applications and future trends. Biotechnology Advances, 2015, 33, 1228-1245.	11.7	93
220	Customization of an optical probe device and validation of a signal processing procedure to study gas–liquid–solid flows. Application to a three-phase internal-loop gas-lift Bioreactor. Chemical Engineering Science, 2015, 138, 814-826.	3.8	6
221	Development and Characterization of an Active Chitosan-Based Film Containing Quercetin. Food and Bioprocess Technology, 2015, 8, 2183-2191.	4.7	85
222	Relationship between galactomannan structure and physicochemical properties of films produced thereof. Journal of Food Science and Technology, 2015, 52, 8292-8299.	2.8	52
223	Rice bran protein-based films enriched by phenolic extract of fermented rice bran and montmorillonite clay. CYTA - Journal of Food, 2015, 13, 204-212.	1.9	20
224	Effects of glazing and chitosan-based coating application on frozen salmon preservation during six-month storage in industrial freezing chambers. LWT - Food Science and Technology, 2015, 61, 524-531.	5.2	37
225	A direct correlation between the antioxidant efficiencies of caffeic acid and its alkyl esters and their concentrations in the interfacial region of olive oil emulsions. The pseudophase model interpretation of the "cut-off―effect. Food Chemistry, 2015, 175, 233-242.	8.2	79
226	Development of polyhydroxyalkanoate/beer spent grain fibers composites for film blowing applications. Polymer Composites, 2015, 36, 1859-1865.	4.6	50
227	Structure and rheological properties of a xyloglucan extracted from Hymenaea courbaril var. courbaril seeds. International Journal of Biological Macromolecules, 2015, 73, 31-38.	7.5	41
228	Effect of an Edible Nanomultilayer Coating by Electrostatic Self-Assembly on the Shelf Life of Fresh-Cut Mangoes. Food and Bioprocess Technology, 2015, 8, 647-654.	4.7	80
229	Influence of moderate electric fields on gelation of whey protein isolate. Food Hydrocolloids, 2015, 43, 329-339.	10.7	82
230	Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydrate Polymers, 2015, 115, 1-9.	10.2	159
231	Distribution and Antioxidant Efficiency of Resveratrol in Stripped Corn Oil Emulsions. Antioxidants, 2014, 3, 212-228.	5.1	12
232	Characterization, physicochemical stability, and evaluation of in vitro digestibility of solid lipid microparticles produced with palm kernel oil and tristearin. Food Science and Technology, 2014, 34, 532-538.	1.7	7
233	Fermentation pH in stirred tank and air-lift bioreactors affects phytase secretion byAspergillus japonicusdifferently but not the particle size. Biocatalysis and Biotransformation, 2014, 32, 39-44.	2.0	3
234	Distribution of catechol in emulsions. Journal of Physical Organic Chemistry, 2014, 27, 290-296.	1.9	12

#	Article	IF	CITATIONS
235	Development and characterization of hydrogels based on natural polysaccharides: Policaju and chitosan. Materials Science and Engineering C, 2014, 42, 219-226.	7.3	35
236	Thoracic splenosis as a differential diagnosis of juxtapleural nodules. Respiratory Medicine Case Reports, 2014, 11, 1-3.	0.4	3
237	Quercetin-Loaded Lecithin/Chitosan Nanoparticles for Functional Food Applications. Food and Bioprocess Technology, 2014, 7, 1149-1159.	4.7	129
238	Physical Characterisation of an Alginate/Lysozyme Nano-Laminate Coating and Its Evaluation on â€~Coalho' Cheese Shelf Life. Food and Bioprocess Technology, 2014, 7, 1088-1098.	4.7	81
239	Design of Bio-nanosystems for Oral Delivery of Functional Compounds. Food Engineering Reviews, 2014, 6, 1-19.	5.9	99
240	Yeast: the soul of beer's aroma—a review of flavour-active esters and higher alcohols produced by the brewing yeast. Applied Microbiology and Biotechnology, 2014, 98, 1937-1949.	3.6	392
241	Physical effects upon whey protein aggregation for nano-coating production. Food Research International, 2014, 66, 344-355.	6.2	66
242	High gravity primary continuous beer fermentation using flocculent yeast biomass. Journal of the Institute of Brewing, 2014, 120, n/a-n/a.	2.3	1
243	Carrier-free, continuous primary beer fermentation. Journal of the Institute of Brewing, 2014, 120, n/a-n/a.	2.3	0
244	Characterization of split cylinder airlift photobioreactors for efficient microalgae cultivation. Chemical Engineering Science, 2014, 117, 445-454.	3.8	56
245	Maintaining yeast viability in continuous primary beer fermentation. Journal of the Institute of Brewing, 2014, 120, 52-59.	2.3	4
246	Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. International Journal of Biological Macromolecules, 2014, 71, 141-146.	7.5	195
247	Quantification of metal release from stainless steel electrodes during conventional and pulsed ohmic heating. Innovative Food Science and Emerging Technologies, 2014, 21, 66-73.	5.6	51
248	Development of Active and Nanotechnology-based Smart Edible Packaging Systems: Physical–chemical Characterization. Food and Bioprocess Technology, 2014, 7, 1472-1482.	4.7	26
249	Continuous-Flow Precipitation of Hydroxyapatite at 37 °C in a Meso Oscillatory Flow Reactor. Industrial & Engineering Chemistry Research, 2013, 52, 9816-9821.	3.7	27
250	Biocomposite Films Based on Î ² -Carrageenan/Locust Bean Gum Blends and Clays: Physical and Antimicrobial Properties. Food and Bioprocess Technology, 2013, 6, 2081-2092.	4.7	75
251	Utilization of Galactomannan from Gleditsia triacanthos in Polysaccharide-Based Films: Effects of Interactions Between Film Constituents on Film Properties. Food and Bioprocess Technology, 2013, 6, 1600-1608.	4.7	13
252	Effects of Acidity, Temperature and Emulsifier Concentration on the Distribution of Caffeic Acid in Stripped Corn and Olive Oilâ€inâ€Water Emulsions. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 1629-1636.	1.9	17

#	Article	IF	CITATIONS
253	Influence of volumetric oxygen transfer coefficient (kLa) on xylanases batch production by Aspergillus niger van Tieghem in stirred tank and internal-loop airlift bioreactors. Biochemical Engineering Journal, 2013, 80, 19-26.	3.6	40
254	Process intensification and optimization for hydroxyapatite nanoparticles production. Chemical Engineering Science, 2013, 100, 352-359.	3.8	39
255	Precipitation of hydroxyapatite at 37 °C in a meso oscillatory flow reactor operated in batch at constant power density. AICHE Journal, 2013, 59, 4483-4493.	3.6	13
256	Inulin potential for encapsulation and controlled delivery of Oregano essential oil. Food Hydrocolloids, 2013, 33, 199-206.	10.7	122
257	Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film. Carbohydrate Polymers, 2013, 92, 2154-2162.	10.2	109
258	Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review. Renewable and Sustainable Energy Reviews, 2013, 21, 35-51.	16.4	509
259	Ohmic heating as a new efficient process for organic synthesis in water. Green Chemistry, 2013, 15, 970.	9.0	37
260	Effect of chitosan-based solutions applied as edible coatings and water glazing on frozen salmon preservation – A pilot-scale study. Journal of Food Engineering, 2013, 119, 316-323.	5.2	48
261	Unravelling the behaviour of curcumin nanoemulsions during in vitro digestion: effect of the surface charge. Soft Matter, 2013, 9, 3147.	2.7	81
262	Transport mechanism of macromolecules on hydrophilic bio-polymeric matrices – Diffusion of protein-based compounds from chitosan films. Journal of Food Engineering, 2013, 116, 633-638.	5.2	21
263	Physico-mechanical properties of chitosan films with carvacrol and grape seed extract. Journal of Food Engineering, 2013, 115, 466-474.	5.2	279
264	Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresource Technology, 2013, 139, 149-154.	9.6	210
265	Continuous-flow precipitation of hydroxyapatite in ultrasonic microsystems. Chemical Engineering Journal, 2013, 215-216, 979-987.	12.7	52
266	Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri. Bioresource Technology, 2013, 144, 268-274.	9.6	114
267	Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocolloids, 2013, 30, 110-122.	10.7	360
268	8. Shelf-life extension of cheese using edible packaging materials. Human Health Handbooks, 2013, , 123-136.	0.1	1
269	Κ-carrageenan/chitosan nanolayered coating for controlled release of a model bioactive compound. Innovative Food Science and Emerging Technologies, 2012, 16, 227-232.	5.6	70
270	Production of xylanase and β-xylosidase from autohydrolysis liquor of corncob using two fungal strains. Bioprocess and Biosystems Engineering, 2012, 35, 1185-1192.	3.4	35

#	Article	IF	CITATIONS
271	Effect of pulsed electric field on the germination of barley seeds. LWT - Food Science and Technology, 2012, 47, 161-166.	5.2	47
272	Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresource Technology, 2012, 118, 61-66.	9.6	309
273	Characterization of intermediate stages in the precipitation of hydroxyapatite at 37°C. Chemical Engineering Science, 2012, 77, 150-156.	3.8	35
274	A New Approach on Brewer's Spent Grains Treatment and Potential Use as Lignocellulosic Yeast Cells Carriers. Journal of Agricultural and Food Chemistry, 2012, 60, 5994-5999.	5.2	28
275	Polysaccharide/Protein Nanomultilayer Coatings: Construction, Characterization and Evaluation of Their Effect on â€~Rocha' Pear (Pyrus communis L.) Shelf-Life. Food and Bioprocess Technology, 2012, 5, 2435-2445.	4.7	60
276	The Effect of the Electric Field on Lag Phase, β-Galactosidase Production and Plasmid Stability of a Recombinant Saccharomyces cerevisiae Strain Growing on Lactose. Food and Bioprocess Technology, 2012, 5, 3014-3020.	4.7	19
277	Effects of Interactions between the Constituents of Chitosan-Edible Films on Their Physical Properties. Food and Bioprocess Technology, 2012, 5, 3181-3192.	4.7	47
278	Hydrogen plasma treatment of very thin p-type nanocrystalline Si films grown by RF-PECVD in the presence of B(CH3)3. Science and Technology of Advanced Materials, 2012, 13, 045004.	6.1	12
279	Starch determination in Chlorella vulgaris—a comparison between acid and enzymatic methods. Journal of Applied Phycology, 2012, 24, 1203-1208.	2.8	70
280	Nanoemulsions for Food Applications: Development and Characterization. Food and Bioprocess Technology, 2012, 5, 854-867.	4.7	483
281	Interactions between κ-carrageenan and chitosan in nanolayered coatings—Structural and transport properties. Carbohydrate Polymers, 2012, 87, 1081-1090.	10.2	70
282	Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocolloids, 2012, 27, 220-227.	10.7	389
283	Effect of glycerol and corn oil on physicochemical properties of polysaccharide films – A comparative study. Food Hydrocolloids, 2012, 27, 175-184.	10.7	412
284	Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocolloids, 2012, 27, 287-292.	10.7	324
285	Synergistic effects between κ-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocolloids, 2012, 29, 280-289.	10.7	271
286	Bioethanol production from hydrothermal pretreated wheat straw by a flocculating Saccharomyces cerevisiae strain – Effect of process conditions. Fuel, 2012, 95, 528-536.	6.4	100
287	Kinetic modeling of enzymatic saccharification using wheat straw pretreated under autohydrolysis and organosolv process. Industrial Crops and Products, 2012, 36, 100-107.	5.2	72
288	Effect of the matrix system in the delivery and in vitro bioactivity of microencapsulated Oregano essential oil. Journal of Food Engineering, 2012, 110, 190-199.	5.2	67

#	Article	IF	CITATIONS
289	Development and characterization of a nanomultilayer coating of pectin and chitosan – Evaluation of its gas barrier properties and application on †Tommy Atkins' mangoes. Journal of Food Engineering, 2012, 110, 457-464.	5.2	99
290	Xylanase and β-Xylosidase Production by Aspergillus ochraceus: New Perspectives for the Application of Wheat Straw Autohydrolysis Liquor. Applied Biochemistry and Biotechnology, 2012, 166, 336-347.	2.9	30
291	Exploring the Denaturation of Whey Proteins upon Application of Moderate Electric Fields: A Kinetic and Thermodynamic Study. Journal of Agricultural and Food Chemistry, 2011, 59, 11589-11597.	5.2	54
292	Antioxidant Potential of Two Red Seaweeds from the Brazilian Coasts. Journal of Agricultural and Food Chemistry, 2011, 59, 5589-5594.	5.2	86
293	Galactomannans use in the development of edible films/coatings for food applications. Trends in Food Science and Technology, 2011, 22, 662-671.	15.1	182
294	Yeast metabolic state identification using micro-fiber optics spectroscopy. Proceedings of SPIE, 2011, , .	0.8	0
295	Formation of Flavor-Active Compounds during Continuous Alcohol-Free Beer Production: The Influence of Yeast Strain, Reactor Configuration, and Carrier Type. Journal of the American Society of Brewing Chemists, 2011, 69, 1-7.	1.1	11
296	Production of xylanolytic enzymes by Aspergillus terricola in stirred tank and airlift tower loop bioreactors. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1979-1984.	3.0	25
297	Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Applied Energy, 2011, 88, 3331-3335.	10.1	315
298	Structural and thermal characterization of galactomannans from non-conventional sources. Carbohydrate Polymers, 2011, 83, 179-185.	10.2	206
299	Development and Characterization of an Environmentally Friendly Process Sequence (Autohydrolysis) Tj ETQq1 1 629-641.	0.784314 2.9	rgBT /Overl 88
300	Evaluation of a hydrothermal process for pretreatment of wheat straw—effect of particle size and process conditions. Journal of Chemical Technology and Biotechnology, 2011, 86, 88-94.	3.2	43
301	Aqueous two-phase micellar systems in an oscillatory flow micro-reactor: study of perspectives and experimental performance. Journal of Chemical Technology and Biotechnology, 2011, 86, 1159-1165.	3.2	7
302	Effect of spent grains on flow regime transition in bubble column. Chemical Engineering Science, 2011, 66, 3350-3357.	3.8	13
303	CFD simulation and experimental measurement of gas holdup and liquid interstitial velocity in internal loop airlift reactor. Chemical Engineering Science, 2011, 66, 3268-3279.	3.8	67
304	Rheological characterization of κ-carrageenan/galactomannan and xanthan/galactomannan gels: Comparison of galactomannans from non-traditional sources with conventional galactomannans. Carbohydrate Polymers, 2011, 83, 392-399.	10.2	69
305	Influence of concentration, ionic strength and pH on zeta potential and mean hydrodynamic diameter of edible polysaccharide solutions envisaged for multinanolayered films production. Carbohydrate Polymers, 2011, 85, 522-528.	10.2	216
306	Modeling of the α-lactalbumin and β-lactoglobulin protein separation. Chemical Engineering Research and Design, 2011, 89, 156-163.	5.6	2

#	Article	IF	CITATIONS
307	Nanoemulsions of β-carotene using a high-energy emulsification–evaporation technique. Journal of Food Engineering, 2011, 102, 130-135.	5.2	174
308	Physico-chemical characterization of chitosan-based edible films incorporating bioactive compounds of different molecular weight. Journal of Food Engineering, 2011, 106, 111-118.	5.2	137
309	Protein-based resins for food packaging. , 2011, , 610-648.		12
310	Multifunctional and nanoreinforced polymers for food packaging. , 2011, , .		34
311	Processing of byproducts to improve nisin production by Lactococcus lactis. African Journal of Biotechnology, 2011, 10, .	0.6	15
312	Sizing and counting of saccharomyces cerevisiae floc populations by image analysis, using an automatically calculated threshold. Biotechnology and Bioengineering, 2010, 51, 673-678.	3.3	22
313	Electrical Conductivity: Foods. , 2010, , 396-399.		Ο
314	Polysaccharide from Anacardium occidentale L. tree gum (Policaju) as a coating for Tommy Atkins mangoes. Chemical Papers, 2010, 64, .	2.2	21
315	Use of galactomannan edible coating application and storage temperature for prolonging shelf-life of "Regional―cheese. Journal of Food Engineering, 2010, 97, 87-94.	5.2	90
316	New edible coatings composed of galactomannans and collagen blends to improve the postharvest quality of fruits – Influence on fruits gas transfer rate. Journal of Food Engineering, 2010, 97, 101-109.	5.2	99
317	Evaluation of a chitosan-based edible film as carrier of natamycin to improve the storability of Saloio cheese. Journal of Food Engineering, 2010, 101, 349-356.	5.2	217
318	The Use of Electric Fields for Edible Coatings and Films Development and Production: A Review. Food Engineering Reviews, 2010, 2, 244-255.	5.9	60
319	Light Regime Characterization in an Airlift Photobioreactor for Production of Microalgae with High Starch Content. Applied Biochemistry and Biotechnology, 2010, 161, 218-226.	2.9	57
320	Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances, 2010, 28, 817-830.	11.7	585
321	Characterization of galactomannans extracted from seeds of Gleditsia triacanthos and Sophora japonica through shear and extensional rheology: Comparison with guar gum and locust bean gum. Food Hydrocolloids, 2010, 24, 184-192.	10.7	139
322	Influence of electric fields on the structure of chitosan edible coatings. Food Hydrocolloids, 2010, 24, 330-335.	10.7	81
323	Moderate electric fields can inactivate Escherichia coli at room temperature. Journal of Food Engineering, 2010, 96, 520-527.	5.2	67
324	Numerical study of micromixing combining alternate flow and obstacles. International Communications in Heat and Mass Transfer, 2010, 37, 581-586.	5.6	27

#	Article	IF	CITATIONS
325	Liquid backmixing in oscillatory flow through a periodically constricted meso-tube. Chemical Engineering and Processing: Process Intensification, 2010, 49, 793-803.	3.6	15
326	Physical and thermal properties of a chitosan/alginate nanolayered PET film. Carbohydrate Polymers, 2010, 82, 153-159.	10.2	119
327	Shelf Life Extension of Ricotta Cheese Using Coatings of Galactomannans from Nonconventional Sources Incorporating Nisin against <i>Listeria monocytogenes</i> . Journal of Agricultural and Food Chemistry, 2010, 58, 1884-1891.	5.2	135
328	Effect of Chitosan-Based Coatings on the Shelf Life of Salmon (Salmo salar). Journal of Agricultural and Food Chemistry, 2010, 58, 11456-11462.	5.2	130
329	Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International, 2010, 43, 1936-1943.	6.2	433
330	Seed extracts of Gleditsia triacanthos: Functional properties evaluation and incorporation into galactomannan films. Food Research International, 2010, 43, 2031-2038.	6.2	55
331	Ohmic heating – a review. Trends in Food Science and Technology, 2010, 21, 436-441.	15.1	252
332	Effects of Electric Fields on Protein Unfolding and Aggregation: Influence on Edible Films Formation. Biomacromolecules, 2010, 11, 2912-2918.	5.4	137
333	Improving alternate flow mixing by obstacles located along a micro-channel. , 2009, 2009, 7034-6.		0
334	Chitosan/clay films' properties as affected by biopolymer and clay micro/nanoparticles' concentrations. Food Hydrocolloids, 2009, 23, 1895-1902.	10.7	328
335	Effect of moderate electric fields in the permeation properties of chitosan coatings. Food Hydrocolloids, 2009, 23, 2110-2115.	10.7	67
336	Metabolomic evaluation of pulsed electric field-induced stress on potato tissue. Planta, 2009, 230, 469-479.	3.2	69
337	Suitability of novel galactomannans as edible coatings for tropical fruits. Journal of Food Engineering, 2009, 94, 372-378.	5.2	111
338	Banana as Adjunct in Beer Production: Applicability and Performance of Fermentative Parameters. Applied Biochemistry and Biotechnology, 2009, 155, 53-62.	2.9	31
339	Total Soluble Solids from Banana: Evaluation and Optimization of Extraction Parameters. Applied Biochemistry and Biotechnology, 2009, 153, 34-43.	2.9	7
340	Cellulosic Films Obtained from the Treatment of Sugarcane Bagasse Fibers with N-methylmorpholine-N-oxide (NMMO). Applied Biochemistry and Biotechnology, 2009, 154, 38-47.	2.9	14
341	Effects of Pulsed Electric Field on the Viscoelastic Properties of Potato Tissue. Food Biophysics, 2009, 4, 229-239.	3.0	34
342	Physical properties of edible coatings and films made with a polysaccharide from Anacardium occidentale L. Journal of Food Engineering, 2009, 95, 379-385.	5.2	82

#	ARTICLE	IF	CITATIONS
343	Thermodynamic studies of partitioning behavior of lysozyme and conalbumin in aqueous two-phase systems. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 2579-2584.	2.3	25
344	Extraction, purification and characterization of galactomannans from non-traditional sources. Carbohydrate Polymers, 2009, 75, 408-414.	10.2	153
345	Functional Polysaccharides as Edible Coatings for Cheese. Journal of Agricultural and Food Chemistry, 2009, 57, 1456-1462.	5.2	112
346	Novel Technologies for Milk Processing. Contemporary Food Engineering, 2009, , 155-174.	0.2	0
347	Active and Intelligent Packaging for Milk and Milk Products. Contemporary Food Engineering, 2009, , 175-199.	0.2	13
348	Exploring Metabolic Responses of Potato Tissue Induced by Electric Pulses. Food Biophysics, 2008, 3, 352-360.	3.0	44
349	Computational Shelf-Life Dating: Complex Systems Approaches to Food Quality and Safety. Food and Bioprocess Technology, 2008, 1, 207-222.	4.7	47
350	An Alternative Application to the Portuguese Agro-Industrial Residue: Wheat Straw. Applied Biochemistry and Biotechnology, 2008, 147, 85-96.	2.9	47
351	Pulsed electric field reduces the permeability of potato cell wall. Bioelectromagnetics, 2008, 29, 296-301.	1.6	39
352	Pulsed electric field in combination with vacuum impregnation with trehalose improves the freezing tolerance of spinach leaves. Journal of Food Engineering, 2008, 88, 144-148.	5.2	111
353	A Review of Flavour Formation in Continuous Beer Fermentations*. Journal of the Institute of Brewing, 2008, 114, 3-13.	2.3	83
354	High gravity batch and continuous processes for beer production: Evaluation of fermentation performance and beer quality. Chemical Papers, 2008, 62, .	2.2	19
355	Continuous Beer Fermentation Using Immobilized Yeast Cell Bioreactor Systems. Biotechnology Progress, 2008, 21, 653-663.	2.6	86
356	Differentiation of human pre-adipocytes by recombinant adiponectin. Protein Expression and Purification, 2008, 59, 122-126.	1.3	11
357	Goat Milk Free Fatty Acid Characterization During Conventional and Ohmic Heating Pasteurization. Journal of Dairy Science, 2008, 91, 2925-2937.	3.4	49
358	Chitosan coating surface properties as affected by plasticizer, surfactant and polymer concentrations in relation to the surface properties of tomato and carrot. Food Hydrocolloids, 2008, 22, 1452-1459.	10.7	95
359	Enhanced Gasâ^'Liquid Mass Transfer of an Oscillatory Constricted-Tubular Reactor. Industrial & Engineering Chemistry Research, 2008, 47, 7190-7201.	3.7	28
360	Margarine products quality monitoring using reflectance UV-VIS-SWNIR spectroscopy. Nature Precedings, 2008, , .	0.1	0

#	Article	IF	CITATIONS
361	Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biology and Technology, 2007, 44, 63-70.	6.0	308
362	The intensification of gas–liquid flows with a periodic, constricted oscillatory-meso tube. Chemical Engineering Science, 2007, 62, 7454-7462.	3.8	16
363	Acquisition-analysis system for the DANCE (detector for advanced neutron capture experiments) BaF/sub 2/ gamma-ray calorimeter. IEEE Transactions on Nuclear Science, 2006, 53, 880-885.	2.0	46
364	The use of TIC's as a managing tool for traceability in the food industry. Food Research International, 2006, 39, 772-781.	6.2	25
365	Application of a Novel Oscillatory Flow Micro-bioreactor to the Production of Î ³ -decalactone in a Two Immiscible Liquid Phase Medium. Biotechnology Letters, 2006, 28, 485-490.	2.2	29
366	Continuous immobilized yeast reactor system for complete beer fermentation using spent grains and corncobs as carrier materials. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 1010-1018.	3.0	41
367	Proof-of-concept of a novel micro-bioreactor for fast development of industrial bioprocesses. Biotechnology and Bioengineering, 2006, 95, 744-753.	3.3	31
368	Fluid Mechanics and Design Aspects of a Novel Oscillatory Flow Screening Mesoreactor. Chemical Engineering Research and Design, 2005, 83, 357-371.	5.6	68
369	Relationships between hydrodynamics and rheology of flocculating yeast suspensions in a high-cell-density airlift bioreactor. Biotechnology and Bioengineering, 2005, 89, 393-399.	3.3	27
370	CFD simulations of RTD of a strawberry pulp in a continuous ohmic heater. Computer Aided Chemical Engineering, 2004, , 163-168.	0.5	3
371	Growth Model and Metabolic Activity of Brewing Yeast Biofilm on the Surface of Spent Grains: A Biocatalyst for Continuous Beer Fermentation. Biotechnology Progress, 2004, 20, 1733-1740.	2.6	25
372	Physicochemical surface properties of brewing yeast influencing their immobilization onto spent grains in a continuous reactor. Biotechnology and Bioengineering, 2004, 88, 84-93.	3.3	56
373	Residence times and mixing of a novel continuous oscillatory flow screening reactor. Chemical Engineering Science, 2004, 59, 4967-4974.	3.8	70
374	Ohmic heating of strawberry products: electrical conductivity measurements and ascorbic acid degradation kinetics. Innovative Food Science and Emerging Technologies, 2004, 5, 27-36.	5.6	177
375	Continuous Primary Fermentation of Beer with Yeast Immobilized on Spent Grains—The Effect of Operational Conditions. Journal of the American Society of Brewing Chemists, 2004, 62, 29-34.	1.1	38
376	The Effect of Electric Field on Important Foodâ€processing Enzymes: Comparison of Inactivation Kinetics under Conventional and Ohmic Heating. Journal of Food Science, 2004, 69, C696.	3.1	114
377	Hydrodynamic considerations on optimal design of a three-phase airlift bioreactor with high solids loading. Journal of Chemical Technology and Biotechnology, 2003, 78, 935-944.	3.2	23
378	THE INFLUENCE of FIELD STRENGTH, SUGAR and SOLID CONTENT ON ELECTRICAL CONDUCTIVITY of STRAWBERRY PRODUCTS. Journal of Food Process Engineering, 2003, 26, 17-29.	2.9	95

#	Article	IF	CITATIONS
379	Hydrodynamics of a Threeâ€phase Airlift Reactor with an Enlarged Separator — Application to High Cell Density Systems. Canadian Journal of Chemical Engineering, 2003, 81, 433-443.	1.7	16
380	Continuous Primary Beer Fermentation with Brewing Yeast Immobilized on Spent Grains. Journal of the Institute of Brewing, 2002, 108, 410-415.	2.3	30
381	Spent grains – a new support for brewing yeast immobilisation. Biotechnology Letters, 2001, 23, 1073-1078.	2.2	75
382	Applications of yeast flocculation in biotechnological processes. Biotechnology and Bioprocess Engineering, 2000, 5, 288-305.	2.6	58
383	Increase of ethanol productivity in an airlift reactor with a modified draught tube. Canadian Journal of Chemical Engineering, 1999, 77, 497-502.	1.7	14
384	On-line estimation of biomass through pH control analysis in aerobic yeast fermentation systems. , 1998, 58, 445-450.		29
385	Mass transfer properties of glucose and O2 in Saccharomyces cerevisiae flocs. Biochemical Engineering Journal, 1998, 2, 35-43.	3.6	31
386	Modelling diffusion-reaction phenomena in yeast flocs of. Bioprocess and Biosystems Engineering, 1998, 18, 335.	0.5	0
387	A new technique for measuring kinetic and mass transfer parameters in flocs of Saccharomyces cerevisiae. Biotechnology Letters, 1997, 11, 113-116.	0.5	6
388	A new sampling device for measuring solids hold-up in a three-phase system. Biotechnology Letters, 1997, 11, 489-492.	0.5	4
389	Hydrodynamic performance of a three-phase airlift bioreactor with an enlarged degassing zone. Bioprocess and Biosystems Engineering, 1995, 14, 17.	0.5	0