Robert M Samstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/890142/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved prediction of immune checkpoint blockade efficacy across multiple cancer types. Nature Biotechnology, 2022, 40, 499-506.	17.5	110
2	Functional landscapes of POLE and POLD1 mutations in checkpoint blockade-dependent antitumor immunity. Nature Genetics, 2022, 54, 996-1012.	21.4	30
3	Pathogenic <i>ATM</i> Mutations in Cancer and a Genetic Basis for Radiotherapeutic Efficacy. Journal of the National Cancer Institute, 2021, 113, 266-273.	6.3	38
4	Genomic Analyses for Predictors of Response to Chemoradiation in Stage III Non-Small Cell Lung Cancer. Advances in Radiation Oncology, 2021, 6, 100615.	1.2	6
5	The association between tumor mutational burden and prognosis is dependent on treatment context. Nature Genetics, 2021, 53, 11-15.	21.4	139
6	Taking CAR T cells up a synthetic Notch. Nature Reviews Immunology, 2021, 21, 135-135.	22.7	3
7	Where are we with proton beam therapy for thoracic malignancies? Current status and future perspectives. Lung Cancer, 2021, 152, 157-164.	2.0	6
8	Lynch Syndrome and MSI-H Cancers: From Mechanisms to "Off-The-Shelf―Cancer Vaccines. Frontiers in Immunology, 2021, 12, 757804.	4.8	31
9	Supporting the next generation of scientists to lead cancer immunology research. Cancer Immunology Research, 2021, 9, canimm.0519.2021.	3.4	1
10	Metabolic and immunomodulatory control of type 1 diabetes via orally delivered bile-acid-polymer nanocarriers of insulin or rapamycin. Nature Biomedical Engineering, 2021, 5, 983-997.	22.5	30
11	Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification. Cancer Cell, 2021, 39, 1594-1609.e12.	16.8	151
12	Tumor mutational burden as a predictive biomarker for checkpoint inhibitor immunotherapy. Human Vaccines and Immunotherapeutics, 2020, 16, 112-115.	3.3	47
13	Mutations in BRCA1 and BRCA2 differentially affect the tumor microenvironment and response to checkpoint blockade immunotherapy. Nature Cancer, 2020, 1, 1188-1203.	13.2	114
14	Shared Immunogenic Poly-Epitope Frameshift Mutations in Microsatellite Unstable Tumors. Cell, 2020, 183, 1634-1649.e17.	28.9	103
15	Immunology of COVID-19: Current State of the Science. Immunity, 2020, 52, 910-941.	14.3	1,387
16	DNA Repair Gene Mutations as Predictors of Immune Checkpoint Inhibitor Response beyond Tumor Mutation Burden. Cell Reports Medicine, 2020, 1, 100034.	6.5	46
17	Genomic Determinants of Clinical Outcomes in Rhabdomyosarcoma. Clinical Cancer Research, 2020, 26, 1135-1140.	7.0	33
18	Advancing scientific knowledge in times of pandemics. Nature Reviews Immunology, 2020, 20, 338-338.	22.7	49

ROBERT M SAMSTEIN

#	Article	IF	CITATIONS
19	Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nature Medicine, 2019, 25, 767-775.	30.7	282
20	Genetic diversity of tumors with mismatch repair deficiency influences anti–PD-1 immunotherapy response. Science, 2019, 364, 485-491.	12.6	395
21	An Antitumor Immune Response Is Evoked by Partial-Volume Single-Dose Radiation in 2 Murine Models. International Journal of Radiation Oncology Biology Physics, 2019, 103, 697-708.	0.8	62
22	Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nature Genetics, 2019, 51, 202-206.	21.4	2,702
23	In situ vaccination with defined factors overcomes T cell exhaustion in distant tumors. Journal of Clinical Investigation, 2019, 129, 3435-3447.	8.2	33
24	Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science, 2018, 359, 582-587.	12.6	834
25	The DNA damage response in immunotherapy and radiation. Advances in Radiation Oncology, 2018, 3, 527-533.	1.2	24
26	Safety of combining thoracic radiation therapy with concurrent versus sequential immune checkpoint inhibition. Advances in Radiation Oncology, 2018, 3, 391-398.	1.2	33
27	Dissecting microsatellite instability in colorectal cancer: one size does not fit all. Genome Medicine, 2017, 9, 45.	8.2	4
28	Localized sinonasal mucosal melanoma: Outcomes and associations with stage, radiotherapy, and positron emission tomography response. Head and Neck, 2016, 38, 1310-1317.	2.0	65
29	Unilateral Suppression of Brown Fat on FDG PET/CT in Horner Syndrome. Clinical Nuclear Medicine, 2016, 41, 797-798.	1.3	5
30	Locally Advanced and Unresectable Cutaneous Squamous Cell Carcinoma: Outcomes of Concurrent Cetuximab and Radiotherapy. Journal of Skin Cancer, 2014, 2014, 1-7.	1.2	37
31	Inflammation-induced repression of chromatin bound by the transcription factor Foxp3 in regulatory T cells. Nature Immunology, 2014, 15, 580-587.	14.5	193
32	A comparative encyclopedia of DNA elements in the mouse genome. Nature, 2014, 515, 355-364.	27.8	1,444
33	Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science, 2014, 346, 1007-1012.	12.6	244
34	Foxp3 Exploits a Pre-Existent Enhancer Landscape for Regulatory T Cell Lineage Specification. Cell, 2012, 151, 153-166.	28.9	411
35	Extrathymic Generation of Regulatory T Cells in Placental Mammals Mitigates Maternal-Fetal Conflict. Cell, 2012, 150, 29-38.	28.9	534
36	Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nature Immunology, 2012, 13, 1010-1019.	14.5	377

ROBERT M SAMSTEIN

#	Article	IF	CITATIONS
37	Interleukin-10 Signaling in Regulatory T Cells Is Required for Suppression of Th17 Cell-Mediated Inflammation. Immunity, 2011, 34, 566-578.	14.3	799
38	Luteinizing Hormone-Releasing Hormone Enhances T Cell Recovery following Allogeneic Bone Marrow Transplantation. Journal of Immunology, 2009, 182, 5846-5854.	0.8	75
39	CD4 ⁺ Regulatory T Cells Control T _H 17 Responses in a Stat3-Dependent Manner. Science, 2009, 326, 986-991.	12.6	895
40	The use of deoxycholic acid to enhance the oral bioavailability of biodegradable nanoparticles. Biomaterials, 2008, 29, 703-708.	11.4	76
41	Regulatory T Cell Reconstitution is Delayed Following Allogeneic Bone Marrow Transplantation. FASEB Journal, 2008, 22, 862.20.	0.5	0
42	Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nature Medicine, 2006, 12, 657-664.	30.7	697
43	Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting. Biomaterials, 2005, 26, 5727-5736.	11.4	174
44	Osteoclasts Are Involved in Stem Cell Mobilization: Cleavage of SDF-1 by Cathepsin K Blood, 2004, 104, 1291-1291.	1.4	14