Hyun Young Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8901354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multidimensional Hybrid Architecture Encapsulating Cobalt Oxide Nanoparticles into Carbon Nanotube Branched Nitrogenâ€Doped Reduced Graphene Oxide Networks for Lithium–Sulfur Batteries. Energy and Environmental Materials, 2022, 5, 555-564.	7.3	40
2	Activity of layered swedenborgite structured Y _{0.8} Er _{0.2} BaCo _{3.2} Ga _{0.8} O _{7+δ} for oxygen electrode reactions in at intermediate temperature reversible ceramic cells. Journal of Materials Chemistry A, 2021, 9, 607-621.	5.2	36
3	Development of K4Fe3(PO4)2(P2O7) as a novel Fe-based cathode with high energy densities and excellent cyclability in rechargeable potassium batteries. Energy Storage Materials, 2020, 28, 47-54.	9.5	32
4	Development of Na2FePO4F/Conducting-Polymer composite as an exceptionally high performance cathode material for Na-ion batteries. Journal of Power Sources, 2019, 432, 1-7.	4.0	29
5	Understanding the structural phase transitions in lithium vanadium phosphate cathodes for lithium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 10331-10336.	5.2	29
6	Unveiling yavapaiite-type K Fe(SO4)2 as a new Fe-based cathode with outstanding electrochemical performance for potassium-ion batteries. Nano Energy, 2019, 66, 104184.	8.2	28
7	Layered Double Hydroxide Quantum Dots for Use in a Bifunctional Separator of Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 17978-17987.	4.0	28
8	Selective Anionic Redox and Suppressed Structural Disordering Enabling Highâ€Energy and Longâ€Life Liâ€Rich Layeredâ€Oxide Cathode. Advanced Energy Materials, 2021, 11, 2102311.	10.2	25
9	Development of a New Mixed-Polyanion Cathode with Superior Electrochemical Performances for Na-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 163-171.	3.2	20
10	Unexpectedly high electrochemical performances of a monoclinic Na _{2.4} V ₂ (PO ₄) ₃ /conductive polymer composite for Na-ion batteries. Journal of Materials Chemistry A, 2018, 6, 17571-17578.	5.2	19
11	Exceptionally increased reversible capacity of O3-type NaCrO2 cathode by preventing irreversible phase transition. Energy Storage Materials, 2022, 46, 289-299.	9.5	17
12	Na0.97KFe(SO4)2: an iron-based sulfate cathode material with outstanding cyclability and power capability for Na-ion batteries. Journal of Materials Chemistry A, 2018, 6, 17095-17100.	5.2	16
13	Na ₂ Fe ₂ F ₇ : a fluoride-based cathode for high power and long life Na-ion batteries. Energy and Environmental Science, 2021, 14, 1469-1479.	15.6	16
14	Autoâ€Oxygenated Porphyrinâ€Derived Redox Mediators for Highâ€Performance Lithium Airâ€Breathing Batteries. Advanced Energy Materials, 2022, 12, 2103527.	10.2	15
15	The Conversion Chemistry for High-Energy Cathodes of Rechargeable Sodium Batteries. ACS Nano, 2019, 13, 11707-11716.	7.3	13
16	Strategic Approach to Diversify Design Options for Liâ€Ion Batteries by Utilizing Lowâ€Ni Layered Cathode Materials. Advanced Energy Materials, 2022, 12, .	10.2	13
17	High-power rhombohedral-Fe2(SO4)3 with outstanding cycle-performance as Fe-based cathode for K-ion batteries. Energy Storage Materials, 2020, 33, 276-282.	9.5	12
18	Highly Stable Fe ²⁺ /Ti ³⁺ â€Based Fluoride Cathode Enabling Low ost and Highâ€Performance Naâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	11

HYUN YOUNG PARK

#	Article	IF	CITATIONS
19	Exceptionally high-energy tunnel-type V1.5Cr0.5O4.5H nanocomposite as a novel cathode for Na-ion batteries. Nano Energy, 2020, 77, 105175.	8.2	10
20	Low-cost and high-power K ₄ [Mn ₂ Fe](PO ₄) ₂ (P ₂ O ₇) as a novel cathode with outstanding cyclability for K-ion batteries. Journal of Materials Chemistry A, 2021, 9, 9898-9908.	5.2	9
21	K _{1.5} VOPO ₄ F _{0.5} : a novel high-power and high-voltage cathode for rechargeable K-ion batteries. Journal of Materials Chemistry A, 2021, 9, 11802-11811.	5.2	8
22	Dual lithium storage of Pt electrode: alloying and reversible surface layer. Journal of Materials Chemistry A, 2021, 9, 18377-18384.	5.2	7
23	Development of Novel Cathode with Large Lithium Storage Mechanism Based on Pyrophosphateâ€Based Conversion Reaction for Rechargeable Lithium Batteries. Small Methods, 2020, 4, 1900847.	4.6	5
24	Prognostic Significance of Left Axis Deviation in Acute Heart Failure Patients with Left Bundle branch block: an Analysis from the Korean Acute Heart Failure (KorAHF) Registry. Korean Circulation Journal, 2018, 48, 1002.	0.7	4
25	A high-energy conversion-type cathode activated by amorpholization for Li rechargeable batteries. Journal of Materials Chemistry A, 2022, 10, 20080-20089.	5.2	4
26	An exceptionally large energy cathode with the K–SO ₄ –Cu conversion reaction for potassium rechargeable batteries. Journal of Materials Chemistry A, 2021, 9, 5475-5484.	5.2	3
27	Introduction of New Iron Sulfate Cathode Material for Na-Ion Batteries with Great Power-Capability and out Standing Cyclability. ECS Meeting Abstracts, 2019, , .	0.0	0
28	Monoclinic Na2.4V2(PO4)3/Conductive Polymer Composite As High Capacity Cathodes for Na-Ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
29	Strategic Approach to Diversify Design Options for Liâ€lon Batteries by Utilizing Lowâ€Ni Layered Cathode Materials (Adv. Energy Mater. 7/2022). Advanced Energy Materials, 2022, 12, .	10.2	0
30	Recent Progress of Cathode Materials for Na-ion batteries. Ceramist, 2022, 25, 76-89.	0.0	0