
Guo-Jie Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/890101/publications.pdf Version: 2024-02-01

CUO-LIE ZHANC

#	Article	IF	CITATIONS
1	The oyster genome reveals stress adaptation and complexity of shell formation. Nature, 2012, 490, 49-54.	13.7	1,966
2	Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 2014, 346, 1320-1331.	6.0	1,583
3	The genome of the cucumber, Cucumis sativus L Nature Genetics, 2009, 41, 1275-1281.	9.4	1,317
4	Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 2012, 491, 393-398.	13.7	1,190
5	Towards complete and error-free genome assemblies of all vertebrate species. Nature, 2021, 592, 737-746.	13.7	1,139
6	The sequence and de novo assembly of the giant panda genome. Nature, 2010, 463, 311-317.	13.7	1,058
7	Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 2014, 346, 1311-1320.	6.0	895
8	The diploid genome sequence of an Asian individual. Nature, 2008, 456, 60-65.	13.7	834
9	Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature Biotechnology, 2012, 30, 105-111.	9.4	818
10	Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature, 2013, 499, 74-78.	13.7	717
11	The yak genome and adaptation to life at high altitude. Nature Genetics, 2012, 44, 946-949.	9.4	708
12	Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nature Genetics, 2014, 46, 253-260.	9.4	685
13	Earth BioGenome Project: Sequencing life for the future of life. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4325-4333.	3.3	652
14	Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaScience, 2013, 2, 10.	3.3	582
15	Comparative Analysis of Bat Genomes Provides Insight into the Evolution of Flight and Immunity. Science, 2013, 339, 456-460.	6.0	522
16	Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature, 2011, 479, 223-227.	13.7	517
17	Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra) Tj ETQq1	1	4 rgBT /Ovei 479
18	The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4724-4733.	1.2	478

#	Article	IF	CITATIONS
19	The locust genome provides insight into swarm formation and long-distance flight. Nature Communications, 2014, 5, 2957.	5.8	437
20	Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Research, 2010, 20, 646-654.	2.4	435
21	Genomic Comparison of the Ants <i>Camponotus floridanus</i> and <i>Harpegnathos saltator</i> . Science, 2010, 329, 1068-1071.	6.0	420
22	The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nature Genetics, 2013, 45, 701-706.	9.4	409
23	Whole-genome sequence of Schistosoma haematobium. Nature Genetics, 2012, 44, 221-225.	9.4	383
24	Convergent transcriptional specializations in the brains of humans and song-learning birds. Science, 2014, 346, 1256846.	6.0	379
25	Molecular traces of alternative social organization in a termite genome. Nature Communications, 2014, 5, 3636.	5.8	371
26	Population Genomics Reveal Recent Speciation and Rapid Evolutionary Adaptation in Polar Bears. Cell, 2014, 157, 785-794.	13.5	363
27	Genome-wide and Caste-Specific DNA Methylomes of the Ants Camponotus floridanus and Harpegnathos saltator. Current Biology, 2012, 22, 1755-1764.	1.8	361
28	The i5K Initiative: Advancing Arthropod Genomics for Knowledge, Human Health, Agriculture, and the Environment. Journal of Heredity, 2013, 104, 595-600.	1.0	358
29	Genomic signatures of evolutionary transitions from solitary to group living. Science, 2015, 348, 1139-1143.	6.0	357
30	Epigenetic modification and inheritance in sexual reversal of fish. Genome Research, 2014, 24, 604-615.	2.4	356
31	Single base–resolution methylome of the silkworm reveals a sparse epigenomic map. Nature Biotechnology, 2010, 28, 516-520.	9.4	349
32	Complete Resequencing of 40 Genomes Reveals Domestication Events and Genes in Silkworm () Tj ETQq0 0 0 r	gBT/Overl	ock 10 Tf 50 2
33	Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science, 2014, 346, 1254449.	6.0	300
34	Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques. Nature Biotechnology, 2011, 29, 1019-1023.	9.4	284
35	Genome of the Chinese tree shrew. Nature Communications, 2013, 4, 1426.	5.8	284
36	Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. BMC Genomics, 2012, 13, 300.	1.2	266

#	Article	IF	CITATIONS
37	Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science, 2019, 364, .	6.0	266
38	Complex evolutionary trajectories of sex chromosomes across bird taxa. Science, 2014, 346, 1246338.	6.0	258
39	Progressive Cactus is a multiple-genome aligner for the thousand-genome era. Nature, 2020, 587, 246-251.	13.7	256
40	Dense sampling of bird diversity increases power of comparative genomics. Nature, 2020, 587, 252-257.	13.7	251
41	Ascaris suum draft genome. Nature, 2011, 479, 529-533.	13.7	246
42	Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14500-14505.	3.3	243
43	Temporal Dynamics of Avian Populations during Pleistocene Revealed by Whole-Genome Sequences. Current Biology, 2015, 25, 1375-1380.	1.8	243
44	On the origin of new genes in <i>Drosophila</i> . Genome Research, 2008, 18, 1446-1455.	2.4	240
45	Genomic Diversity and Evolution of the Head Crest in the Rock Pigeon. Science, 2013, 339, 1063-1067.	6.0	230
46	Draft genome sequence of the Tibetan antelope. Nature Communications, 2013, 4, 1858.	5.8	229
47	The Genome of Dendrobium officinale Illuminates the Biology of the Important Traditional Chinese Orchid Herb. Molecular Plant, 2015, 8, 922-934.	3.9	228
48	Genome analysis reveals insights into physiology and longevity of the Brandt's bat Myotis brandtii. Nature Communications, 2013, 4, 2212.	5.8	213
49	The genome of the leaf-cutting ant <i>Acromyrmex echinatior</i> suggests key adaptations to advanced social life and fungus farming. Genome Research, 2011, 21, 1339-1348.	2.4	210
50	High Rate of Chimeric Gene Origination by Retroposition in Plant Genomes. Plant Cell, 2006, 18, 1791-1802.	3.1	207
51	The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry. Nature Genetics, 2017, 49, 119-124.	9.4	178
52	Genomic legacy of the African cheetah, Acinonyx jubatus. Genome Biology, 2015, 16, 277.	3.8	167
53	Adaptations to a Subterranean Environment and Longevity Revealed by the Analysis of Mole Rat Genomes. Cell Reports, 2014, 8, 1354-1364.	2.9	162
54	Whole-genome sequence of the Tibetan frog <i>Nanorana parkeri</i> and the comparative evolution of tetrapod genomes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1257-62.	3.3	159

#	Article	IF	CITATIONS
55	Preparation of Pd–Au/C catalysts with different alloying degree and their electrocatalytic performance for formic acid oxidation. Applied Catalysis B: Environmental, 2011, 102, 614-619.	10.8	155
56	Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. Nature Communications, 2015, 6, 8212.	5.8	146
57	863 genomes reveal the origin and domestication of chicken. Cell Research, 2020, 30, 693-701.	5.7	144
58	The Genome of the Clonal Raider Ant Cerapachys biroi. Current Biology, 2014, 24, 451-458.	1.8	143
59	A near-chromosome-scale genome assembly of the gemsbok (<i>Oryx gazella</i>): an iconic antelope of the Kalahari desert. GigaScience, 2019, 8, .	3.3	138
60	The era of reference genomes in conservation genomics. Trends in Ecology and Evolution, 2022, 37, 197-202.	4.2	138
61	Comparative performance of the BCISEQ-500 vs Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing. GigaScience, 2017, 6, 1-13.	3.3	137
62	Bird sequencing project takes off. Nature, 2015, 522, 34-34.	13.7	136
63	Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes. Nature Communications, 2014, 5, 5594.	5.8	135
64	Comparative genomics of parasitic silkworm microsporidia reveal an association between genome expansion and host adaptation. BMC Genomics, 2013, 14, 186.	1.2	127
65	Genome of <i>Drosophila suzukii</i> , the Spotted Wing <i>Drosophila</i> . G3: Genes, Genomes, Genetics, 2013, 3, 2257-2271.	0.8	126
66	The sequence and analysis of a Chinese pig genome. GigaScience, 2012, 1, 16.	3.3	125
67	Reference-assisted chromosome assembly. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1785-1790.	3.3	124
68	Hologenomic adaptations underlying the evolution of sanguivory in the common vampire bat. Nature Ecology and Evolution, 2018, 2, 659-668.	3.4	124
69	The Earth BioGenome Project 2020: Starting the clock. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	124
70	Genetic basis of ruminant headgear and rapid antler regeneration. Science, 2019, 364, .	6.0	121
71	Comparative genomic data of the Avian Phylogenomics Project. GigaScience, 2014, 3, 26.	3.3	117
72	Red fox genome assembly identifies genomic regions associated with tame and aggressive behaviours. Nature Ecology and Evolution, 2018, 2, 1479-1491.	3.4	113

#	Article	IF	CITATIONS
73	The genomic consequences of adaptive divergence and reproductive isolation between species of manakins. Molecular Ecology, 2013, 22, 3304-3317.	2.0	108
74	Reciprocal genomic evolution in the ant–fungus agricultural symbiosis. Nature Communications, 2016, 7, 12233.	5.8	106
75	Reference genome of wild goat (capra aegagrus) and sequencing of goat breeds provide insight into genic basis of goat domestication. BMC Genomics, 2015, 16, 431.	1.2	103
76	Evidence for a single loss of mineralized teeth in the common avian ancestor. Science, 2014, 346, 1254390.	6.0	99
77	African lungfish genome sheds light on the vertebrate water-to-land transition. Cell, 2021, 184, 1362-1376.e18.	13.5	99
78	High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps. GigaScience, 2015, 4, 45.	3.3	97
79	The Genomic Footprints of the Fall and Recovery of the Crested Ibis. Current Biology, 2019, 29, 340-349.e7.	1.8	94
80	Evolutionary trajectories of snake genes and genomes revealed by comparative analyses of five-pacer viper. Nature Communications, 2016, 7, 13107.	5.8	88
81	The origin of domestication genes in goats. Science Advances, 2020, 6, eaaz5216.	4.7	86
82	Platypus and echidna genomes reveal mammalian biology and evolution. Nature, 2021, 592, 756-762.	13.7	85
83	Dynamic evolution of the alpha (α) and beta (β) keratins has accompanied integument diversification and the adaptation of birds into novel lifestyles. BMC Evolutionary Biology, 2014, 14, 249.	3.2	84
84	Genomic signatures of near-extinction and rebirth of the crested ibis and other endangered bird species. Genome Biology, 2014, 15, 557.	3.8	83
85	High-coverage sequencing and annotated assemblies of the budgerigar genome. GigaScience, 2014, 3, 11.	3.3	75
86	Olfactory Receptor Subgenomes Linked with Broad Ecological Adaptations in Sauropsida. Molecular Biology and Evolution, 2015, 32, 2832-2843.	3.5	73
87	The draft genome of a socially polymorphic halictid bee, Lasioglossum albipes. Genome Biology, 2013, 14, R142.	13.9	72
88	Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment. GigaScience, 2014, 3, 27.	3.3	72
89	Phylogenomic analyses data of the avian phylogenomics project. GigaScience, 2015, 4, 4.	3.3	72
90	Constrained vertebrate evolution by pleiotropic genes. Nature Ecology and Evolution, 2017, 1, 1722-1730.	3.4	72

#	Article	IF	CITATIONS
91	The evolutionary history of extinct and living lions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10927-10934.	3.3	70
92	A Young Drosophila Duplicate Gene Plays Essential Roles in Spermatogenesis by Regulating Several Y-Linked Male Fertility Genes. PLoS Genetics, 2010, 6, e1001255.	1.5	68
93	The genome of the golden apple snail Pomacea canaliculata provides insight into stress tolerance and invasive adaptation. GigaScience, 2018, 7, .	3.3	68
94	Dynamic evolutionary history and gene content of sex chromosomes across diverse songbirds. Nature Ecology and Evolution, 2019, 3, 834-844.	3.4	68
95	Tracing the genetic footprints of vertebrate landing in non-teleost ray-finned fishes. Cell, 2021, 184, 1377-1391.e14.	13.5	66
96	Deciphering neo-sex and B chromosome evolution by the draft genome of Drosophila albomicans. BMC Genomics, 2012, 13, 109.	1.2	64
97	Functional roles of Aves class-specific cis-regulatory elements on macroevolution of bird-specific features. Nature Communications, 2017, 8, 14229.	5.8	61
98	Low frequency of paleoviral infiltration across the avian phylogeny. Genome Biology, 2014, 15, 539.	3.8	60
99	Caste-specific RNA editomes in the leaf-cutting ant Acromyrmex echinatior. Nature Communications, 2014, 5, 4943.	5.8	60
100	A genomic comparison of two termites with different social complexity. Frontiers in Genetics, 2015, 6, 9.	1.1	60
101	Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds. BMC Genomics, 2015, 16, 751.	1.2	58
102	RES-Scanner: a software package for genome-wide identification of RNA-editing sites. GigaScience, 2016, 5, 37.	3.3	55
103	Draft genome of the leopard gecko, Eublepharis macularius. GigaScience, 2016, 5, 47.	3.3	55
104	Cephalopod genomics: A plan of strategies and organization. Standards in Genomic Sciences, 2012, 7, 175-188.	1.5	53
105	Response to Comment on "Whole-genome analyses resolve early branches in the tree of life of modern birds― Science, 2015, 349, 1460-1460.	6.0	53
106	Why sequence all eukaryotes?. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	51
107	Ancient and modern genomes unravel the evolutionary history of the rhinoceros family. Cell, 2021, 184, 4874-4885.e16.	13.5	49
108	Comparative methylomics between domesticated and wild silkworms implies possible epigenetic influences on silkworm domestication. BMC Genomics, 2013, 14, 646.	1.2	47

#	Article	IF	CITATIONS
109	Advances in genome editing technology and its promising application in evolutionary and ecological studies. GigaScience, 2014, 3, 24.	3.3	47
110	A flock of genomes. Science, 2014, 346, 1308-1309.	6.0	46
111	Genomic takeover by transposable elements in the Strawberry poison frog. Molecular Biology and Evolution, 2014, 35, 2913-2927.	3.5	45
112	Genomic and transcriptomic investigations of the evolutionary transition from oviparity to viviparity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3646-3655.	3.3	43
113	Genome and single-cell RNA-sequencing of the earthworm Eisenia andrei identifies cellular mechanisms underlying regeneration. Nature Communications, 2020, 11, 2656.	5.8	43
114	Diverse coral reef invertebrates exhibit patterns of phylosymbiosis. ISME Journal, 2020, 14, 2211-2222.	4.4	43
115	Chromosomal level assembly and population sequencing of the Chinese tree shrew genome. Zoological Research, 2019, 40, 506-521.	0.9	43
116	Incomplete lineage sorting and phenotypic evolution in marsupials. Cell, 2022, 185, 1646-1660.e18.	13.5	43
117	Evolutionary and biomedical insights from a marmoset diploid genome assembly. Nature, 2021, 594, 227-233.	13.7	42
118	Temporal genomic evolution of bird sex chromosomes. BMC Evolutionary Biology, 2014, 14, 250.	3.2	41
119	Pre-extinction Demographic Stability and Genomic Signatures of Adaptation in the Woolly Rhinoceros. Current Biology, 2020, 30, 3871-3879.e7.	1.8	41
120	Towards reconstructing the ancestral brain gene-network regulating caste differentiation in ants. Nature Ecology and Evolution, 2018, 2, 1782-1791.	3.4	40
121	Evolution of gene regulation in ruminants differs between evolutionary breakpoint regions and homologous synteny blocks. Genome Research, 2019, 29, 576-589.	2.4	39
122	Historical population declines prompted significant genomic erosion in the northern and southern white rhinoceros (<i>Ceratotherium simum</i>). Molecular Ecology, 2021, 30, 6355-6369.	2.0	39
123	Identification and characterization of insect-specific proteins by genome data analysis. BMC Genomics, 2007, 8, 93.	1.2	38
124	The Mutationathon highlights the importance of reaching standardization in estimates of pedigree-based germline mutation rates. ELife, 2022, 11, .	2.8	38
125	Developmental plasticity shapes social traits and selection in a facultatively eusocial bee. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13615-13625.	3.3	37
126	A draft genome sequence of the elusive giant squid, Architeuthis dux. GigaScience, 2020, 9, .	3.3	37

#	Article	IF	CITATIONS
127	Mitogenomes Uncover Extinct Penguin Taxa and Reveal Island Formation as a Key Driver of Speciation. Molecular Biology and Evolution, 2019, 36, 784-797.	3.5	36
128	A new duck genome reveals conserved and convergently evolved chromosome architectures of birds and mammals. GigaScience, 2021, 10, .	3.3	36
129	Genomic Adaptations and Evolutionary History of the Extinct Scimitar-Toothed Cat, Homotherium latidens. Current Biology, 2020, 30, 5018-5025.e5.	1.8	34
130	A soft selective sweep during rapid evolution of gentle behaviour in an Africanized honeybee. Nature Communications, 2017, 8, 1550.	5.8	33
131	Standards recommendations for the Earth BioGenome Project. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	33
132	The genome of the largest bony fish, ocean sunfish (Mola mola), provides insights into its fast growth rate. GigaScience, 2016, 5, 36.	3.3	32
133	In-Depth Tanscriptomic Analysis on Giant Freshwater Prawns. PLoS ONE, 2013, 8, e60839.	1.1	32
134	Multi-omic detection of <i>Mycobacterium leprae</i> in archaeological human dental calculus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190584.	1.8	31
135	A flock of genomes. Science, 2014, 346, 1308-1309.	6.0	31
136	Genome sequence of a diabetes-prone rodent reveals a mutation hotspot around the ParaHox gene cluster. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7677-7682.	3.3	30
137	A new emu genome illuminates the evolution of genome configuration and nuclear architecture of avian chromosomes. Genome Research, 2021, 31, 497-511.	2.4	30
138	Improving the ostrich genome assembly using optical mapping data. GigaScience, 2015, 4, 24.	3.3	28
139	Avianbase: a community resource for bird genomics. Genome Biology, 2015, 16, 21.	3.8	28
140	An Effort to Use Human-Based Exome Capture Methods to Analyze Chimpanzee and Macaque Exomes. PLoS ONE, 2012, 7, e40637.	1.1	28
141	Synthesis and Electrocatalytic Properties of Palladium Network Nanostructures. ChemPlusChem, 2012, 77, 936-940.	1.3	27
142	Evolutionary Genomics and Adaptive Evolution of the Hedgehog Gene Family (Shh, Ihh and Dhh) in Vertebrates. PLoS ONE, 2014, 9, e74132.	1.1	27
143	Comparative Phylogenomics, a Stepping Stone for Bird Biodiversity Studies. Diversity, 2019, 11, 115.	0.7	26
144	The germline mutational process in rhesus macaque and its implications for phylogenetic dating. GigaScience, 2021, 10, .	3.3	26

#	Article	IF	CITATIONS
145	Draft genome of the Marco Polo Sheep (Ovis ammon polii). GigaScience, 2017, 6, 1-7.	3.3	25
146	The Vertebrate TLR Supergene Family Evolved Dynamically by Gene Gain/Loss and Positive Selection Revealing a Host–Pathogen Arms Race in Birds. Diversity, 2019, 11, 131.	0.7	25
147	Response of an Afro-Palearctic bird migrant to glaciation cycles. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
148	Evolutionary History, Genomic Adaptation to Toxic Diet, and Extinction of the Carolina Parakeet. Current Biology, 2020, 30, 108-114.e5.	1.8	24
149	Genomic regions influencing aggressive behavior in honey bees are defined by colony allele frequencies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17135-17141.	3.3	24
150	Sequencing, de novo assembling, and annotating the genome of the endangered Chinese crocodile lizard Shinisaurus crocodilurus. GigaScience, 2017, 6, 1-6.	3.3	23
151	Deep parallel sequencing reveals conserved and novel miRNAs in gill and hepatopancreas of giant freshwater prawn. Fish and Shellfish Immunology, 2013, 35, 1061-1069.	1.6	22
152	Draft genome of the milu (Elaphurus davidianus). GigaScience, 2018, 7, .	3.3	22
153	The evolution of ancestral and species-specific adaptations in snowfinches at the Qinghai–Tibet Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	22
154	Large-scale genomic analysis reveals the genetic cost of chicken domestication. BMC Biology, 2021, 19, 118.	1.7	22
155	Transcriptome and Network Changes in Climbers at Extreme Altitudes. PLoS ONE, 2012, 7, e31645.	1.1	21
156	Whole-Genome Identification, Phylogeny, and Evolution of the Cytochrome P450 Family 2 (CYP2) Subfamilies in Birds. Genome Biology and Evolution, 2016, 8, 1115-1131.	1.1	20
157	Relaxed selection underlies genome erosion in socially parasitic ant species. Nature Communications, 2021, 12, 2918.	5.8	20
158	Draft Genome Assembly and Population Genetics of an Agricultural Pollinator, the Solitary Alkali Bee (Halictidae: <i>Nomia melanderi</i>). G3: Genes, Genomes, Genetics, 2019, 9, 625-634.	0.8	19
159	Modes of genetic adaptations underlying functional innovations in the rumen. Science China Life Sciences, 2021, 64, 1-21.	2.3	19
160	Neuroprotectants attenuate hypobaric hypoxia-induced brain injuries in cynomolgus monkeys. Zoological Research, 2020, 41, 3-19.	0.9	19
161	A complete, telomere-to-telomere human genome sequence presents new opportunities for evolutionary genomics. Nature Methods, 2022, 19, 635-638.	9.0	19
162	Ancient population genomics and the study of evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130381.	1.8	18

#	Article	IF	CITATIONS
163	High-coverage genomes to elucidate the evolution of penguins. GigaScience, 2019, 8, .	3.3	18
164	Detoxification Genes Differ Between Cactus-, Fruit-, and Flower-Feeding <i>Drosophila</i> . Journal of Heredity, 2019, 110, 80-91.	1.0	17
165	Phylogenomic analyses of the genus <i>Drosophila</i> reveals genomic signals of climate adaptation. Molecular Ecology Resources, 2022, 22, 1559-1581.	2.2	15
166	A single-cell transcriptomic atlas tracking the neural basis of division of labour in an ant superorganism. Nature Ecology and Evolution, 2022, 6, 1191-1204.	3.4	15
167	Construction of Red Fox Chromosomal Fragments from the Short-Read Genome Assembly. Genes, 2018, 9, 308.	1.0	14
168	An Indo-Pacific Humpback Dolphin Genome Reveals Insights into Chromosome Evolution and the Demography of a Vulnerable Species. IScience, 2020, 23, 101640.	1.9	14
169	Ancient proteins resolve controversy over the identity of <i>Genyornis</i> eggshell. Proceedings of the United States of America, 2022, 119, .	3.3	14
170	An integrated chromosome-scale genome assembly of the Masai giraffe (Giraffa camelopardalis) Tj ETQq0 0 0 rg	3T /Qverlo	ck 10 Tf 50 4
171	Triangulation of the human, chimpanzee, and Neanderthal genome sequences identifies potentially compensated mutations. Human Mutation, 2010, 31, 1286-1293.	1.1	12
172	Bone-associated gene evolution and the origin of flight in birds. BMC Genomics, 2016, 17, 371.	1.2	12
173	Avian Binocularity and Adaptation to Nocturnal Environments: Genomic Insights from a Highly Derived Visual Phenotype. Genome Biology and Evolution, 2019, 11, 2244-2255.	1.1	12
174	Comparative study on pattern recognition receptors in non-teleost ray-finned fishes and their evolutionary significance in primitive vertebrates. Science China Life Sciences, 2019, 62, 566-578.	2.3	12
175	The gene expression network regulating queen brain remodeling after insemination and its parallel use in ants with reproductive workers. Science Advances, 2020, 6, .	4.7	12
176	31° South: The physiology of adaptation to arid conditions in a passerine bird. Molecular Ecology, 2019, 28, 3709-3721.	2.0	11
177	Testing cophylogeny between coral reef invertebrates and their bacterial and archaeal symbionts. Molecular Ecology, 2021, 30, 3768-3782.	2.0	11
178	The bird's-eye view on chromosome evolution. Genome Biology, 2018, 19, 201.	3.8	10
179	Identification and evolution of avian endogenous foamy viruses. Virus Evolution, 2019, 5, vez049.	2.2	10

¹⁸⁰Chromatin accessibility and transcriptome landscapes of Monomorium pharaonis brain. Scientific
Data, 2020, 7, 217.2.410

#	Article	IF	CITATIONS
181	Phylogeny and sex chromosome evolution of Palaeognathae. Journal of Genetics and Genomics, 2022, 49, 109-119.	1.7	10
182	Adaptation and Cryptic Pseudogenization in Penguin Toll-Like Receptors. Molecular Biology and Evolution, 2022, 39, .	3.5	10
183	High-quality chromosome-level genome assembly and full-length transcriptome analysis of the pharaoh ant <i>Monomorium pharaonis</i> . GigaScience, 2020, 9, .	3.3	9
184	Room-temperature synthesis and electrocatalysis of carbon nanotubes supported palladium–iron alloy nanoparticles. Electrochimica Acta, 2013, 111, 898-902.	2.6	8
185	The naked mole rat genome: understanding aging through genome analysis. Aging, 2011, 3, 1124-1124.	1.4	8
186	A draft genome assembly of the eastern banjo frog Limnodynastes dumerilii dumerilii (Anura:ALimnodynastidae). GigaByte, 0, 2020, 1-13.	0.0	8
187	Probing the genomic limits of de-extinction in the Christmas Island rat. Current Biology, 2022, , .	1.8	8
188	Variation in predicted COVIDâ€19 risk among lemurs and lorises. American Journal of Primatology, 2021, 83, e23255.	0.8	7
189	Evolutionary history of the extinct Sardinian dhole. Current Biology, 2021, 31, 5571-5579.e6.	1.8	7
190	Initiation of the Primate Genome Project. Zoological Research, 2022, 43, 147-149.	0.9	7
191	Gut Microbiota Linked with Reduced Fear of Humans in Red Junglefowl Has Implications for Early Domestication. Genetics & Genomics Next, 2021, 2, .	0.8	7
192	Hi-C chromosome conformation capture sequencing of avian genomes using the BGISEQ-500 platform. GigaScience, 2020, 9, .	3.3	6
193	A draft genome assembly of spotted hyena, Crocuta crocuta. Scientific Data, 2020, 7, 126.	2.4	6
194	Sensory Rewiring in an Echolocator: Genome-Wide Modification of Retinogenic and Auditory Genes in the Bat <i>Myotis davidii</i> . G3: Genes, Genomes, Genetics, 2014, 4, 1825-1835.	0.8	5
195	Ancestral developmental potentials in early bony fish contributed to vertebrate water-to-land transition. Zoological Research, 2021, 42, 135-137.	0.9	5
196	Conservation genomics of the endangered Seychelles Magpieâ€Robin (Copsychus sechellarum): A unique insight into the history of a precious endemic bird. Ibis, 0, , .	1.0	4
197	Cross-comparison of the genome sequences from human, chimpanzee, Neanderthal and a Denisovan hominin identifies novel potentially compensated mutations. Human Genomics, 2011, 5, 453.	1.4	3
198	Adaptive diversity of innate immune receptor family short pentraxins in Murinae. FEBS Letters, 2012, 586, 798-803.	1.3	3

#	Article	IF	CITATIONS
199	A novel method for using RNAâ€seq data to identify imprinted genes in social Hymenoptera with multiply mated queens. Journal of Evolutionary Biology, 2020, 33, 1770-1782.	0.8	3
200	Multiple origins of a frameshift insertion in a mitochondrial gene in birds and turtles. GigaScience, 2021, 10, .	3.3	3
201	Dynamic evolution of transposable elements, demographic history, and gene content of paleognathous birds. Zoological Research, 2021, 42, 51-61.	0.9	3
202	Validation of Potential Reference Genes for Real-Time qPCR Analysis in Pharaoh Ant, Monomorium pharaonis (Hymenoptera: Formicidae). Frontiers in Physiology, 2022, 13, 852357.	1.3	3
203	Functional Diversity and Evolution of Bitter Taste Receptors in Egg-Laying Mammals. Molecular Biology and Evolution, 2022, 39, .	3.5	2
204	The first AsiaEvo conference, connecting Asian evolutionary biologists to the world. National Science Review, 2018, 5, 614-616.	4.6	1
205	Studying mutation rate evolution in primates—a need for systematic comparison of computational pipelines. GigaScience, 2021, 10, .	3.3	1
206	Labour classified by cervical dilatation & fetal membrane rupture demonstrates differential impact on RNA-seq data for human myometrium tissues. PLoS ONE, 2021, 16, e0260119.	1.1	1
207	Turtle ghrelin. Nature Genetics, 2014, 46, 526-526.	9.4	0
208	Callithrix jacchus (the common marmoset). Trends in Genetics, 2021, 37, 948-949.	2.9	0