Manja Schubert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8900655/publications.pdf

Version: 2024-02-01

567281 794594 1,277 20 15 19 citations h-index g-index papers 25 25 25 2184 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A method for differentiating human induced pluripotent stem cells toward functional cardiomyocytes in 96-well microplates. Scientific Reports, 2020, 10, 18498.	3.3	30
2	Localization of CDR2L and CDR2 in paraneoplastic cerebellar degeneration. Annals of Clinical and Translational Neurology, 2020, 7, 2231-2242.	3.7	13
3	Reply to " <scp>CDR2</scp> and <scp>CDR2L</scp> Yo Antigens in Paraneoplastic Cerebellar Degeneration― Annals of Neurology, 2020, 88, 429-429.	5.3	O
4	CDR2L Is the Major Yo Antibody Target in Paraneoplastic Cerebellar Degeneration. Annals of Neurology, 2019, 86, 316-321.	5. 3	43
5	Paraneoplastic cerebellar degeneration: Yo antibody alters mitochondrial calcium buffering capacity. Neuropathology and Applied Neurobiology, 2019, 45, 141-156.	3.2	19
6	Paraneoplastic CDR2 and CDR2L antibodies affect Purkinje cell calcium homeostasis. Acta Neuropathologica, 2014, 128, 835-852.	7.7	51
7	Paraneoplastic cerebellar degeneration: Auto-antibodies cause damage to Purkinje cells by changing the calcium homeostasis. Journal of Neuroimmunology, 2014, 275, 38-39.	2.3	0
8	A Novel, Diffusely Infiltrative Xenograft Model of Human Anaplastic Oligodendroglioma with Mutations in FUBP1, CIC, and IDH1. PLoS ONE, 2013, 8, e59773.	2.5	39
9	Balancing Arc Synthesis, mRNA Decay, and Proteasomal Degradation. Journal of Biological Chemistry, 2012, 287, 22354-22366.	3.4	68
10	The Arc of synaptic memory. Experimental Brain Research, 2010, 200, 125-140.	1.5	416
11	Improved Learning and Memory in Aged Mice Deficient in Amyloid \hat{l}^2 -Degrading Neutral Endopeptidase. PLoS ONE, 2009, 4, e4590.	2.5	30
12	SAP97 and CASK mediate sorting of NMDA receptors through a previously unknown secretory pathway. Nature Neuroscience, 2009, 12, 1011-1019.	14.8	184
13	Activation of Kainate GLUK5 Transmission Rescues Kindling-Induced Impairment of LTP in the Rat Lateral Amygdala. Neuropsychopharmacology, 2008, 33, 2524-2535.	5.4	13
14	Genderâ€dependent ATPAâ€induced changes in longâ€term potentiation in the rat lateral amygdala. FASEB Journal, 2008, 22, 1268-1274.	0.5	2
15	Input-specific long-term potentiation in the rat lateral amygdala of horizontal slices. Neurobiology of Learning and Memory, 2006, 85, 272-282.	1.9	23
16	Alcohol Withdrawal and Conditioning. Alcoholism: Clinical and Experimental Research, 2005, 29, 453-464.	2.4	32
17	Kindling-induced changes in plasticity of the rat amygdala and hippocampus. Learning and Memory, 2005, 12, 520-526.	1.3	72
18	Angiotensin-(1–7) enhances LTP in the hippocampus through the G-protein-coupled receptor Mas. Molecular and Cellular Neurosciences, 2005, 29, 427-435.	2.2	104

#	Article	IF	CITATIONS
19	Repeated Ethanol Exposure and Withdrawal Impairs Human Fear Conditioning and Depresses Long-Term Potentiation in Rat Amygdala and Hippocampus. Biological Psychiatry, 2005, 58, 392-400.	1.3	106
20	Long-term depression in horizontal slices of the rat lateral amygdala. Synapse, 2004, 53, 141-150.	1.2	24