Majid Tavassoli Kajani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8900600/publications.pdf

Version: 2024-02-01

471509 477307 39 838 17 29 citations g-index h-index papers 39 39 39 486 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Numerical solutions of the nonlinear Volterra–Fredholm integral equations by using homotopy perturbation method. Applied Mathematics and Computation, 2007, 188, 446-449.	2.2	92
2	Solving linear integro-differential equation system by Galerkin methods with hybrid functions. Applied Mathematics and Computation, 2004, 159, 603-612.	2.2	80
3	Undesirable factors in efficiency measurement. Applied Mathematics and Computation, 2005, 163, 547-552.	2.2	64
4	Solving second kind integral equations by Galerkin methods with hybrid Legendre and Block-Pulse functions. Applied Mathematics and Computation, 2003, 145, 623-629.	2.2	59
5	Numerical solution of linear integro-differential equation by using sine–cosine wavelets. Applied Mathematics and Computation, 2006, 180, 569-574.	2.2	58
6	Numerical solution of time-varying delay systems by Chebyshev wavelets. Applied Mathematical Modelling, 2011, 35, 5235-5244.	4.2	47
7	Application of He's homotopy perturbation method to nonlinear integro-differential equations. Applied Mathematics and Computation, 2007, 188, 538-548.	2.2	42
8	An iterative method for solving dual fuzzy nonlinear equations. Applied Mathematics and Computation, 2005, 167, 316-323.	2.2	39
9	Numerical solution of linear Fredholm and volterra integral equation of the second kind by using Legendre wavelets. Kybernetes, 2003, 32, 1530-1539.	2.2	36
10	The Chebyshev wavelets operational matrix of integration and product operation matrix. International Journal of Computer Mathematics, 2009, 86, 1118-1125.	1.8	34
11	Comparison between the homotopy perturbation method and the sine–cosine wavelet method for solving linear integro-differential equations. Computers and Mathematics With Applications, 2007, 54, 1162-1168.	2.7	31
12	Solving second kind integral equations with hybrid Fourier and block–pulse functions. Applied Mathematics and Computation, 2005, 160, 517-522.	2.2	25
13	Solving linear integro-differential equation with Legendre wavelets. International Journal of Computer Mathematics, 2004, 81, 719-726.	1.8	24
14	Numerical solutions of the nonlinear integro-differential equations: Wavelet-Galerkin method and homotopy perturbation method. Applied Mathematics and Computation, 2007, 188, 450-455.	2.2	22
15	Numerical approximations for Volterra's population growth model with fractional order via a multi-domain pseudospectral method. Applied Mathematical Modelling, 2015, 39, 4300-4308.	4.2	21
16	Numerical solution of two-dimensional nonlinear differential equation by homotopy perturbation method. Applied Mathematics and Computation, 2007, 189, 341-345.	2.2	19
17	On the rational second kind Chebyshev pseudospectral method for the solution of the Thomas–Fermi equation over an infinite interval. Journal of Computational and Applied Mathematics, 2014, 257, 79-85.	2.0	18
18	Solving second kind integral equations with Hybrid Chebyshev and Block-Pulse functions. Applied Mathematics and Computation, 2005, 163, 71-77.	2.2	17

#	Article	IF	Citations
19	Solving Fredholm integral equations of the first kind using $M\tilde{A}^{1}\!\!/\!4$ ntz wavelets. Applied Numerical Mathematics, 2019, 143, 159-171.	2.1	17
20	An Adaptive Pseudospectral Method for Fractional Order Boundary Value Problems. Abstract and Applied Analysis, 2012, 2012, 1-19.	0.7	15
21	Direct method for solving integro differential equations using hybrid Fourier and block-pulse functions. International Journal of Computer Mathematics, 2005, 82, 889-895.	1.8	14
22	Numerical solution of linear Fredholm integral equations using sine–cosine wavelets. International Journal of Computer Mathematics, 2007, 84, 979-987.	1.8	12
23	A Legendre Wavelet Spectral Collocation Method for Solving Oscillatory Initial Value Problems. Journal of Applied Mathematics, 2013, 2013, 1-5.	0.9	10
24	A MÃ 1 /4ntz wavelets collocation method for solving fractional differential equations. Computational and Applied Mathematics, 2018, 37, 5514-5526.	1.3	10
25	Application of Rational Second Kind Chebyshev Functions for System of Integrodifferential Equations on Semi-Infinite Intervals. Journal of Applied Mathematics, 2012, 2012, 1-11.	0.9	5
26	A Multiple-Step Legendre-Gauss Collocation Method for Solving Volterra's Population Growth Model. Mathematical Problems in Engineering, 2013, 2013, 1-6.	1.1	5
27	Hybrid Fourier and block-pulse functions for applications in the calculus of variations. International Journal of Computer Mathematics, 2006, 83, 695-702.	1.8	4
28	The Rational Third-Kind Chebyshev Pseudospectral Method for the Solution of the Thomas-Fermi Equation over Infinite Interval. Mathematical Problems in Engineering, 2013, 2013, 1-6.	1.1	4
29	A Nonclassical Radau Collocation Method for Nonlinear Initial-Value Problems with Applications to Lane-Emden Type Equations. Journal of Applied Mathematics, 2012, 2012, 1-13.	0.9	3
30	Numerical Solution of Nonlinear Volterra Integral Equations System Using Simpson's 3/8 Rule. Mathematical Problems in Engineering, 2012, 2012, 1-16.	1.1	3
31	Solving fractional Fredholm integro–differential equations using Legendre wavelets. Applied Numerical Mathematics, 2021, 166, 168-185.	2.1	3
32	An appropriate method for eigenvalues approximation of sixth-order Sturm-Liouville problems by using integral operation matrix over the Chebyshev polynomials. AIP Conference Proceedings, 2015, , .	0.4	2
33	New construction of wavelets base on floor function. Applied Mathematics and Computation, 2009, 210, 473-478.	2.2	1
34	A collocation method for differential equations with oneâ€point Taylor initial conditions. Mathematical Methods in the Applied Sciences, 2019, 42, 1609-1621.	2.3	1
35	A direct numerical method for approximate solution of inverse reaction diffusion equation via two-dimensional Legendre hybrid functions. Numerical Algorithms, 2020, 83, 511-528.	1.9	1
36	Fair distribution of a common revenue. Journal of Interdisciplinary Mathematics, 2008, 11, 671-680.	0.7	0

#	Article	IF	CITATIONS
37	Numerical solution of differential-difference equations in large intervals using a Taylor collocation method. AIP Conference Proceedings, 2015, , .	0.4	0
38	A direct multi-step Legendre-Gauss collocation method for high-order Volterra integro-differential equation. AIP Conference Proceedings, 2015 , , .	0.4	0
39	Numerical solving of nonlinear differential equations using a hybrid method on a semi-infinite interval. Computational and Applied Mathematics, 2021, 40, 1.	2.2	0