
Panagiotis Apostolakos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8900362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Callose: a multifunctional (1, 3)-β–d-glucan involved in morphogenesis and function of angiosperm stomata. Journal of Biological Research, 2021, 28, 17.	2.1	3
2	Callose and homogalacturonan epitope distribution in stomatal complexes of Zea mays and Vigna sinensis. Protoplasma, 2020, 257, 141-156.	2.1	16
3	De-Esterified Homogalacturonan Enrichment of the Cell Wall Region Adjoining the Preprophase Cortical Cytoplasmic Zone in Some Protodermal Cell Types of Three Land Plants. International Journal of Molecular Sciences, 2020, 21, 81.	4.1	2
4	Local differentiation of cell wall matrix polysaccharides in sinuous pavement cells: its possible involvement in the flexibility of cell shape. Plant Biology, 2018, 20, 223-237.	3.8	29
5	The intracellular and intercellular cross-talk during subsidiary cell formation in Zea mays: existing and novel components orchestrating cell polarization and asymmetric division. Annals of Botany, 2018, 122, 679-696.	2.9	19
6	ROS homeostasis as a prerequisite for the accomplishment of plant cytokinesis. Protoplasma, 2017, 254, 569-586.	2.1	4
7	Spatio-temporal diversification of the cell wall matrix materials in the developing stomatal complexes of Zea mays. Planta, 2016, 244, 1125-1143.	3.2	25
8	Cell wall matrix polysaccharide distribution and cortical microtubule organization: two factors controlling mesophyll cell morphogenesis in land plants. Annals of Botany, 2016, 117, 401-419.	2.9	18
9	Deliberate ROS production and auxin synergistically trigger the asymmetrical division generating the subsidiary cells in Zea mays stomatal complexes. Protoplasma, 2016, 253, 1081-1099.	2.1	22
10	Auxin as an inducer of asymmetrical division generating the subsidiary cells in stomatal complexes of <i>Zea mays</i> . Plant Signaling and Behavior, 2015, 10, e984531.	2.4	18
11	The interplay between ROS and tubulin cytoskeleton in plants. Plant Signaling and Behavior, 2014, 9, e28069.	2.4	62
12	Phosphorylation of a p38â€like <scp>MAPK</scp> is involved in sensing cellular redox state and drives atypical tubulin polymer assembly in angiosperms. Plant, Cell and Environment, 2014, 37, 1130-1143.	5.7	16
13	Early local differentiation of the cell wall matrix defines the contact sites in lobed mesophyll cells of Zea mays. Annals of Botany, 2013, 112, 1067-1081.	2.9	24
14	Plant cell division. Plant Signaling and Behavior, 2012, 7, 771-778.	2.4	58
15	Formation of an endoplasmic reticulum ring associated with acetylated microtubules in the angiosperm preprophase band. Cytoskeleton, 2012, 69, 252-265.	2.0	20
16	Disturbance of reactive oxygen species homeostasis induces atypical tubulin polymer formation and affects mitosis in rootâ€ŧip cells of <i>Triticum turgidum</i> and <i>Arabidopsis thaliana</i> . Cytoskeleton, 2012, 69, 1-21.	2.0	83
17	Actin filament-organized local cortical endoplasmic reticulum aggregations in developing stomatal complexes of grasses. Protoplasma, 2011, 248, 373-390.	2.1	16
18	Callose implication in stomatal opening and closure in the fern <i>Asplenium nidus</i> . New Phytologist, 2010, 186, 623-635.	7.3	19

#	Article	IF	CITATIONS
19	A new callose function. Plant Signaling and Behavior, 2010, 5, 1359-1364.	2.4	17
20	The role of callose in guard-cell wall differentiation and stomatal pore formation in the fern Asplenium nidus. Annals of Botany, 2009, 104, 1373-1387.	2.9	17
21	Microtubule involvement in the deposition of radial fibrillar callose arrays in stomata of the fern <i>Asplenium nidus</i> L Cytoskeleton, 2009, 66, 342-349.	4.4	16
22	The involvement of phospholipases C and D in the asymmetric division of subsidiary cell mother cells of <i>Zea mays</i> . Cytoskeleton, 2008, 65, 863-875.	4.4	24
23	Phospholipase C signaling involvement in macrotubule assembly and activation of the mechanism regulating protoplast volume in plasmolyzed root cells of <i>Triticum turgidum</i> . New Phytologist, 2008, 178, 267-282.	7.3	15
24	Cortical actin filament organization in developing and functioning stomatal complexes ofZea maysandTriticum turgidum. Cytoskeleton, 2007, 64, 531-548.	4.4	32
25	Macrotubuleâ€dependent protoplast volume regulation in plasmolysed rootâ€tip cells of Triticum turgidum : involvement of phospholipase D. New Phytologist, 2006, 171, 737-750.	7.3	35
26	Cytoskeletal asymmetry inZea mayssubsidiary cell mother cells: A monopolar prophase microtubule half-spindle anchors the nucleus to its polar position. Cytoskeleton, 2006, 63, 696-709.	4.4	57
27	Aluminium causes variable responses in actin filament cytoskeleton of the root tip cells of Triticum turgidum. Protoplasma, 2005, 225, 129-140.	2.1	31
28	A cortical cytoplasmic ring predicts the division plane in vacuolated cells of Coleus : the role of actomyosin and microtubules in the establishment and function of the division site. New Phytologist, 2004, 163, 271-286.	7.3	24
29	The role of the cytoskeleton in the morphogenesis and function of stomatal complexes. New Phytologist, 2004, 161, 613-639.	7.3	100
30	Hyperosmotically induced accumulation of a phosphorylated p38-like MAPK involved in protoplast volume regulation of plasmolyzed wheat root cells. FEBS Letters, 2004, 573, 168-174.	2.8	29
31	Organization of the endoplasmic reticulum in dividing cells of the gymnosperms Pinus brutia and Pinus nigra, and of the pterophyte Asplenium nidus. Cell Biology International, 2003, 27, 31-40.	3.0	22
32	Actomyosin is involved in the plasmolytic cycle: gliding movement of the deplasmolyzing protoplast. Protoplasma, 2003, 221, 245-256.	2.1	18
33	Hyperosmotic stress-induced actin filament reorganization in leaf cells of Chlorophyton comosum. Journal of Experimental Botany, 2002, 53, 1699-1710.	4.8	64
34	Hyperosmotic Stress Induces Formation of Tubulin Macrotubules in Root-Tip Cells of Triticum turgidum: Their Probable Involvement in Protoplast Volume Control. Plant and Cell Physiology, 2002, 43, 911-922.	3.1	59
35	Aluminium Effects on Microtubule Organization in Dividing Root-Tip Cells of Triticum turgidum. II. Cytokinetic Cells. Journal of Plant Research, 2001, 114, 157-170.	2.4	42
36	Aluminium effects on microtubule organization in dividing rootâ€ŧip cells of Triticum turgidum . I. Mitotic cells. New Phytologist, 2000, 145, 211-224.	7.3	57

PANAGIOTIS APOSTOLAKOS

#	Article	IF	CITATIONS
37	Gamma-tubulin colocalizes with microtubule arrays and tubulin paracrystals in dividing vegetative cells of higher plants. Protoplasma, 2000, 210, 179-187.	2.1	28
38	Study of mitosis in root-tip cells ofTriticum turgidum treated with the DNA-intercalating agent ethidium bromide. Protoplasma, 2000, 211, 151-164.	2.1	9
39	Microtubule and actin filament organization during stomatal morphogenesis in the fern Asplenium nidus . II. Guard cells. New Phytologist, 1999, 141, 209-223.	7.3	21
40	Probable involvement of cytoskeleton in stomatal-pore formation in Asplenium nidus L. Protoplasma, 1998, 203, 48-57.	2.1	15
41	Microtubule and actin filament organization during stomatal morphogenesis in the fernAsplenium nidus. Protoplasma, 1997, 198, 93-106.	2.1	14
42	Nuclear and microtubular cycles in heterophasic multinuclearTriticum root-tip cells induced by caffeine. Protoplasma, 1996, 194, 164-176.	2.1	8
43	Sinuous ordinary epidermal cells: behind several patterns of waviness, a common morphogenetic mechanism. New Phytologist, 1994, 127, 771-780.	7.3	55
44	Interphase and preprophase microtubule organization in some polarized cell types of the liverwort Marchantia paleacea Bert New Phytologist, 1993, 124, 409-421.	7.3	7
45	Microtubule organization and cell morphogenesis in two semi″obed cell types of Adiantum capillusâ€veneris L. leaflets. New Phytologist, 1993, 125, 509-520.	7.3	26
46	Microtubules and morphogenesis in ordinary epidermal cells ofVigna sinensis leaves. Protoplasma, 1993, 174, 91-100.	2.1	49
47	Patterns of microtubule organization in two polyhedral cell types in the gametophyte of the liverwort Marchantia paleacea Bert New Phytologist, 1992, 122, 165-178.	7.3	15
48	The organization of F-actin in root tip cells ofAdiantum capillus veneris throughout the cell cycle. Protoplasma, 1992, 170, 128-137.	2.1	35
49	Pre-prophase Microtubule Band and Local Wall Thickening in Guard Cell Mother Cells of Some Leguminosae. Annals of Botany, 1982, 50, 779-791.	2.9	40
50	Histochemical studies on the oil-bodies ofMarchantia paleacea bert. Protoplasma, 1978, 97, 13-29.	2.1	15