
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8899940/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering. Cell, 2013, 153, 910-918.	13.5	3,133
2	One-Step Generation of Mice Carrying Reporter and Conditional Alleles by CRISPR/Cas-Mediated Genome Engineering. Cell, 2013, 154, 1370-1379.	13.5	1,442
3	The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature, 2011, 477, 606-610.	13.7	969
4	Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Research, 2013, 23, 1163-1171.	5.7	653
5	Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science, 2019, 364, 289-292.	6.0	573
6	Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nature Protocols, 2014, 9, 1956-1968.	5.5	477
7	Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature, 2019, 571, 275-278.	13.7	330
8	Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice. Cell, 2020, 181, 590-603.e16.	13.5	306
9	Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Research, 2017, 27, 801-814.	5.7	253
10	In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR–dCas9-activator transgenic mice. Nature Neuroscience, 2018, 21, 440-446.	7.1	218
11	Programmable RNA editing with compact CRISPR–Cas13 systems from uncultivated microbes. Nature Methods, 2021, 18, 499-506.	9.0	182
12	Generation of Genetically Modified Mice by Oocyte Injection of Androgenetic Haploid Embryonic Stem Cells. Cell, 2012, 149, 605-617.	13.5	168
13	One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs. Cell Research, 2017, 27, 933-945.	5.7	164
14	CRISPR/Cas9-mediated targeted chromosome elimination. Genome Biology, 2017, 18, 224.	3.8	142
15	Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation. Cell Research, 2013, 23, 92-106.	5.7	124
16	Tild-CRISPR Allows for Efficient and Precise Gene Knockin in Mouse and Human Cells. Developmental Cell, 2018, 45, 526-536.e5.	3.1	123
17	Generation of haploid embryonic stem cells from Macaca fascicularis monkey parthenotes. Cell Research, 2013, 23, 1187-1200.	5.7	106
18	Lentiviral delivery of co-packaged Cas9 mRNA and a Vegfa-targeting guide RNA prevents wet age-related macular degeneration in mice. Nature Biomedical Engineering, 2021, 5, 144-156.	11.6	98

#	Article	IF	CITATIONS
19	A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects. Nature Methods, 2020, 17, 600-604.	9.0	97
20	A dual inhibition: microRNA-552 suppresses both transcription and translation of cytochrome P450 2E1. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 650-662.	0.9	84
21	CRISPR/Cas9 – Mediated Precise Targeted Integration In Vivo Using a Double Cut Donor with Short Homology Arms. EBioMedicine, 2017, 20, 19-26.	2.7	69
22	Modulation of metabolic functions through Cas13d-mediated gene knockdown in liver. Protein and Cell, 2020, 11, 518-524.	4.8	66
23	Highly efficient base editing in human tripronuclear zygotes. Protein and Cell, 2017, 8, 772-775.	4.8	52
24	Defects in Trophoblast Cell Lineage Account for the Impaired InÂVivo Development of Cloned Embryos Generated by Somatic Nuclear Transfer. Cell Stem Cell, 2011, 8, 371-375.	5.2	47
25	Advances in detecting and reducing off-target effects generated by CRISPR-mediated genome editing. Journal of Genetics and Genomics, 2019, 46, 513-521.	1.7	45
26	A Cas-embedding strategy for minimizing off-target effects of DNA base editors. Nature Communications, 2020, 11, 6073.	5.8	45
27	Simultaneous zygotic inactivation of multiple genes in mouse through CRISPR/Cas9-mediated base editing. Development (Cambridge), 2018, 145, .	1.2	42
28	Mitochondrial base editor DdCBE causes substantial DNA off-target editing in nuclear genome of embryos. Cell Discovery, 2022, 8, 27.	3.1	41
29	Generation of knock-in cynomolgus monkey via CRISPR/Cas9 editing. Cell Research, 2018, 28, 379-382.	5.7	40
30	CasRx-mediated RNA targeting prevents choroidal neovascularization in a mouse model of age-related macular degeneration. National Science Review, 2020, 7, 835-837.	4.6	38
31	Gene-edited babies: What went wrong and what could go wrong. PLoS Biology, 2019, 17, e3000224.	2.6	34
32	Base editing-mediated splicing correction therapy for spinal muscular atrophy. Cell Research, 2020, 30, 548-550.	5.7	33
33	UBE3A-mediated PTPA ubiquitination and degradation regulate PP2A activity and dendritic spine morphology. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12500-12505.	3.3	32
34	Gene editing in a Myo6 semi-dominant mouse model rescues auditory function. Molecular Therapy, 2022, 30, 105-118.	3.7	31
35	Conversion of Astrocytes and Fibroblasts into Functional Noradrenergic Neurons. Cell Reports, 2019, 28, 682-697.e7.	2.9	25
36	Questions about NgAgo. Protein and Cell, 2016, 7, 913-915.	4.8	24

#	Article	IF	CITATIONS
37	GOTI, a method to identify genome-wide off-target effects of genome editing in mouse embryos. Nature Protocols, 2020, 15, 3009-3029.	5.5	24
38	Different developmental potential of pluripotent stem cells generated by different reprogramming strategies. Journal of Molecular Cell Biology, 2011, 3, 197-199.	1.5	23
39	Recent advances in mammalian reproductive biology. Science China Life Sciences, 2020, 63, 18-58.	2.3	23
40	Disruption of splicing-regulatory elements using CRISPR/Cas9 to rescue spinal muscular atrophy in human iPSCs and mice. National Science Review, 2020, 7, 92-101.	4.6	22
41	Base-Editing-Mediated R17H Substitution in Histone H3 Reveals Methylation-Dependent Regulation of Yap Signaling and Early Mouse Embryo Development. Cell Reports, 2019, 26, 302-312.e4.	2.9	21
42	Screened AAV variants permit efficient transduction access to supporting cells and hair cells. Cell Discovery, 2019, 5, 49.	3.1	20
43	Human cleaving embryos enable robust homozygotic nucleotide substitutions by base editors. Genome Biology, 2019, 20, 101.	3.8	20
44	Precise genome editing without exogenous donor DNA via retron editing system in human cells. Protein and Cell, 2021, 12, 899-902.	4.8	19
45	Human cleaving embryos enable efficient mitochondrial base-editing with DdCBE. Cell Discovery, 2022, 8, 7.	3.1	19
46	Prediction and Validation of Mouse Meiosis-Essential Genes Based on Spermatogenesis Proteome Dynamics. Molecular and Cellular Proteomics, 2021, 20, 100014.	2.5	18
47	High-efficiency somatic reprogramming induced by intact MII oocytes. Cell Research, 2010, 20, 1034-1042.	5.7	17
48	Endogenous promoter-driven sgRNA for monitoring the expression of low-abundance transcripts and IncRNAs. Nature Cell Biology, 2021, 23, 99-108.	4.6	14
49	A phosphorylation of RIPK3 kinase initiates an intracellular apoptotic pathway that promotes prostaglandin21±-induced corpus luteum regression. ELife, 2021, 10, .	2.8	14
50	CRISPR/Cas9-mediated Targeted Integration In Vivo Using a Homology-mediated End Joining-based Strategy. Journal of Visualized Experiments, 2018, , .	0.2	13
51	Indiscriminate ssDNA cleavage activity of CRISPR-Cas12a induces no detectable off-target effects in mouse embryos. Protein and Cell, 2021, 12, 741-745.	4.8	13
52	Recent advances in CRISPR research. Protein and Cell, 2020, 11, 786-791.	4.8	12
53	Mice generated after round spermatid injection into haploid two-cell blastomeres. Cell Research, 2011, 21, 854-858.	5.7	10
54	Perfecting Targeting in CRISPR. Annual Review of Genetics, 2021, 55, 453-477.	3.2	10

#	Article	IF	CITATIONS
55	Treatment of autosomal recessive hearing loss via in vivo CRISPR/Cas9-mediated optimized homology-directed repair in mice. Cell Research, 2022, 32, 699-702.	5.7	10
56	Haploid embryonic stem cells: an ideal tool for mammalian genetic analyses. Protein and Cell, 2012, 3, 806-810.	4.8	9
57	Coordination of two enhancers drives expression of olfactory trace amine-associated receptors. Nature Communications, 2021, 12, 3798.	5.8	8
58	CRISPR/Cas: a potential gene-editing tool in the nervous system. Cell Regeneration, 2020, 9, 12.	1.1	8
59	Transduction catalysis: Doxorubicin amplifies rAAV-mediated gene expression in the cortex of higher-order vertebrates. IScience, 2021, 24, 102685.	1.9	7
60	Response to "Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation― Genome Biology, 2021, 22, 98.	3.8	3
61	Funding research, a Chinese perspective. Genome Biology, 2019, 20, 177.	3.8	0